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1. Introduction

In the Laboratory of Biomedical Physics (BIMEF), we are —among other things—
interested in the mechanical behaviour of biological structures. Examples are the
motion and deformation of the mammalian tympanic membrane, stress analysis in
various evolutionary adapted bird beaks and the mechanical behaviour of blood
vessels during blood transport.

The physical theory that describes the phenomena of internal forces (stress) and
deformations (strain) is called elasticity theory. It establishes a mathematical model
that allows solving various mechanical problems.

The equations describing elastic behaviour can be solved using finite element
modelling. This is a numerical technique that gives approximate solutions. The finite
element method becomes very useful when exact analytical solutions of a problem
cannot be found.

In this short guide, a brief introduction with useful references to the theory of
elasticity and the theory of finite element modelling is given. Furthermore the finite
element software that we use in our laboratory, called FEBio (Finite Elements for
Biomechanics), is introduced. The references are attached in order of appearance at
the end of this document.

2. Theory of Elasticity

The concept of the elastic force-deformation relation was first proposed by Robert
Hooke in 1678. However, the major formulation of the mathematical theory of
elasticity was not developed until the 19" century.

As a result of applied loadings, elastic solids will change shape or deform. An elastic
solid is said to be deformed or strained when the relative displacements between
points in the body are changed. This is in contrast to rigid body motion, where the
distance between points remains the same. The work done by the applied loadings is
stored inside the body in the form of strain energy. For an idealized body, this stored
energy is completely recoverable when the solid is returned to its original
configuration.

This section is divided in two parts. Section 2.1 introduces linear elasticity theory,
which is valid as long as the deformations are small. In many problems, however,
deformations become large and non-linear models should be considered. The theory
of non-linear solid mechanics is introduced in section 2.2.

2.1 Linear elastic materials

The development of the basic field equations of elasticity theory begins with a
description of the kinematics of material deformation. When the shape of an elastic
body changes, this deformation can be quantified by knowing the displacements of all
material points in the body. The description of the deformation of an infinitesimal part
in the continuum leads to the development of the strain tensor. When the deformations
are small, i.e. in the case that linear elasticity can be used, the small strain tensor is a
good descriptor. The small strain tensor is introduced in Appendix A (2.1-2.2).



When a structure is subjected to applied external loadings, internal forces are
introduced in the body. These internal forces are distributed continuously within the
continuum. The Cauchy stress tensor describes the internal forces per unit area and is
introduced in Appendix B (3.1-3.2).

Up till now, we have not considered specific material response. We only introduced
descriptions for deformations and internal forces. However, it is to be expected that
steel will for example behave stiffer than aluminum. To conclude this section, a
particular material model that provides reasonable characterization of materials under
small deformations is specialized: the linear elastic material, see Appendix C (4.1-
4.3). In linear elasticity theory the fourth order elasticity tensor C linearly relates the
small strain tensor € and the stress tensor o as follows: ¢ = C : ¢ (index notation: cjj =
Ciju - €x). When the material is isotropic, only two independent elastic constants are
needed to describe the behaviour: Young’s modulus E and Poisson’s ratio v.

The easiest way to experimentally characterize materials is performing a uniaxial
tension test in which a cylindrical or flat sample is loaded axially. The axial strain in
this case is the relative change in length, the stress is the measured force divided by
the cross-sectional area. For a linear material, the relationship between uniaxial strain
and stress is linear. This is for example true for steel under small deformations, typical
up till 1%.

2.2 Non-linear solid mechanics

Performing a uniaxial tension test on a rubber sample, let’s say up till 100%, one will
see that the stress-strain curve is highly non-linear. This is an example of a situation
where non-linear continuum mechanics must be used.

Two sources of non-linearity exist in the analysis of solid continua, namely material
and geometric non-linearity. The former occurs when, for whatever reason, the stress-
strain behaviour is non-linear. The latter is important when changes in geometry have
an effect on the load deformation behaviour.

For large —also denoted with finite— deformations (in contrast to small deformations),
the undeformed and deformed configurations can be significantly different and a
distinction between these two configurations must be maintained. This gives rise to
another description of strain as compared to linear elasticity.

A key quantity in finite deformation analysis is the deformation gradient F, which is
central to the description of (large deformation) strain. Consider the deformation of an
object when it moves from the initial or reference configuration (denoted with
material coordinates X) to the current configuration (denoted with spatial coordinates
X). The deformation map ¢ maps the coordinates of a material point to the spatial

configuration: x=¢(X). The deformation gradient tensor is now defined asF:S—fi,
and relates an infinitesimal vector in the reference configuration dX to the
corresponding vector in the current configuration dx = F-dX. In order to define a
strain measure, we first introduce the right Cauchy-Green deformation tensor as
follows: C=F'F. This tensor can now be used to define an appropriate strain measure

in the material configuration, the Green-Lagrange strain tensor: E = %(C— 1), with |

the identity tensor. A thorough and mathematical description of the previous matter is
given in Appendix D (3.1-3.5). It is however noted that this may be —in the scope of
the student’s work— too exhaustive.



In section 2.1 about linear elasticity we defined the Cauchy stress tensor (o), which is
a spatial tensor since it is described in the current configuration. Since the Green-
Lagrange strain tensor is defined in material coordinates, we need a material stress
measure associated with the initial configuration of the body. This leads to the second
Piola-Kirchhoff stress tensor, given as S = JF'6F ' (J = determinant of deformation
gradient tensor). In Appendix E (4.1-4.5), more info can be found. Again, this may be
too exhaustive.

We now arrive at the point in which we want to find expressions that correlate stress
and strain. These expressions, known as constitutive equations, obviously depend on
the type of material. For example classical small strain elasticity involved a Young’s
modulus and a Poisson’s ratio and related stress and strain linearly. To allow a more
general behaviour, we now show the concept of a hyperelastic material whereby
stresses are derived from a stored elastic energy function.

When the work done by the stresses during a deformation process is dependent only
on the initial state and the final configuration, the behaviour of the material is termed
hyperelastic. As a consequence a stored energy function or elastic potential per unit
undeformed volume can be established which is only dependent of the current
deformation gradient, so that we have for the energy density function: ¥ (F(X), X).
The dependency upon X allows for possible inhomogeneity. For convenience, W is
often expressed as a function of C=F'F, thus ¥ (C(X), X).

For the very important case of isotropic materials, it is required that the constitutive
behaviour is independent of the material axes chosen. In general, the components of a
second-order tensor will change when the axes are rotated. The invariants of a
second-order tensor however remain unaltered under such transformations.
Consequently, for isotropic materials ¥ must only be a function of the invariants of
C. The invariants, denoted I, I, I3, are given as Iy = tr C, I, = %[(tr C)*-tr C?], 15 =
det C. For isotropic materials we hence write W (14, I, I3, X).

A material is considered incompressible if it shows no change in volume during
deformation. Rubber materials show for example nearly-incompressible behaviour
under typical, non-hydrostatic loadings. Incompressibility means that J = 1 (nho
volume change) holds throughout the entire body. When one wants to model
incompressible behaviour, it is useful to separate the volumetric and the deviatoric
(distortional) components of the deformation gradient. Using this separation, the
energy density function ¥ can be given as ¥(C) = ¥(C) + U(J). In this equation,
P (C) is the distortional component of the energy function in which no volumetric
effects are included. U(J) represents the volumetric energy component. An example
for U that is used in the following definitions of constitutive models is
U@) = % « (Ind)% « represents the bulk modulus, a high value of it will enforce
incompressibility since it will enforce J = 1. A detailed description about
hyperelasticity can be found in Appendix F.

We end this section by giving two frequently used hyperelastic materials: the
Mooney-Rivlin and the Ogden material. The Mooney-Rivlin material is given as:

¥ =C,,(1,-3)+Cy,(l, —3)+%K(|nJ)2,

with Cyo and Cy; the Mooney-Rivlin material constants that specify material
behaviour.



Another commonly used hyperelastic material was proposed by Ogden. His energy
density function is given in terms of the eigenvalues of the deviatoric part of the right
Cauchy-Green deformation tensor (A1 Az As) which are also independent of the
chosen material axes:

‘Pzig(ﬂi 25 1A —3)+%K(|n 3.

ui and o are the material constants, N is the order of the model.

3. Finite element modelling

The finite element method has been developed over the last 40 years into a popular
technique for solving a number of significant problems in engineering and physics.
For mechanical problems, it will predict displacements and stresses.

The method dicretizes the domain under study, i.e. the material geometry, by dividing
the region into subdomains called elements. This process is called meshing. Within
each element, an approximate solution is developed, and this is quantified at particular
locations called nodes. Then, based on system connectivity the elements are
assembled and boundary conditions are applied. This results in an algebraic set of —in
general non-linear— equations which can be solved, usually with the Newton-Raphson
iterative technique. Because the element size can be varied, the method can accurately
simulate problems of complex geometry and loadings.

Generally, the finite element formulation is established in terms of a weak
(variational) form of the differential equations under consideration. In the context of
solid mechanics this implies the use of the virtual work equation. This equation states
that the sum of the work done by applied forces and the internal energy for virtual
displacements is zero. This is a variational approach to find the minimum of the total
potential energy. In a dynamic (time-dependent) analysis, the inertial effects are also
included in the equations. This is important when modelling dynamic loadings, e.g.
deformation of the tympanic membrane under acoustic frequencies.

In Appendix G the finite element formulas derivations are given for two-dimensional,
linear isotropic elastostatic problems. For general, three-dimensional non-linear time-
dependent problems, the theory is more exhaustive and not given here. However, the
limited case in Appendix G will give useful insight in the procedure.

4. FEBio

FEBio (Finite Elements for Biomechanics) is a non-linear finite element solver that is
specifically designed for biomechanical applications. It offers modelling scenarios,
constitutive models and boundary conditions that are relevant to many research areas
in biomechanics.

FEBIo supports two analysis types, namely quasi-static and dynamic. In a quasi-static
analysis, the (quasi-) static response of the system is sought and the effects of inertia
are ignored. In a dynamic analysis, the inertial effects are included in the governing
equations to calculate the time dependent response of the system.

FEBio runs on several different computing platforms including Windows XP,
Mac OSX and most versions of Linux. FEBIo is started from a shell window (also
known as the command prompt in Windows). The name of an input file (.feb) has to
be specified in the command line.



FEBIo does not have mesh generation capabilities. Therefore the input files need to be
generated by pre-processing software. The pre-processor associated with FEBIo is
called PreView.

After running FEBIo, two files are created: the log file (.log) and the plot file (.plt).
The log file is a text file that contains the screen output that was generated during a
run.The user can request FEBIo to output additional data in the log file. This is very
useful to extract nodal positions, forces ... The plot file contains the results of the
analysis. Since this is a binary file, the results must be analyzed using the post
processing software PostView.

FEBIo and the related PreView and PostView software packages can be downloaded
at the following link: http://mrl.sci.utah.edu/software. First create an account, next
you can start downloading. The user’s manuals of FEBio, PreView and PostView
provide a good basis to become familiar with the software package. The PreView
user’s manual shows some easy problems to start with. They are also available for
download at the website.

5. Appendices

e Appendix A — Deformation: Displacements and Strains
From: Elasticity. Theory, Applications and Numerics — Martin H. Sadd

e Appendix B — Stress and Equilibrium
From: Elasticity. Theory, Applications and Numerics — Martin H. Sadd

e Appendix C — Material Behaviour — Linear Elastic Solids
From: Elasticity. Theory, Applications and Numerics — Martin H. Sadd

e Appendix D — Kinematics
From: Nonlinear continuum mechanics for finite element analysis - Bonet and
Wood

e Appendix E — Stress and Equilibrium
From: Nonlinear continuum mechanics for finite element analysis - Bonet and
Wood

e Appendix F — Hyperelasticity
From: Nonlinear continuum mechanics for finite element analysis - Bonet and
Wood

e Appendix G — Stress and Equilibrium
From: Elasticity. Theory, Applications and Numerics — Martin H. Sadd
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2 Deformation: Displacements and Strains

We begin development of the basic field equations of elasticity theory by first investigating the
kinematics of material deformation. As a result of applied loadings, elastic solids will change
shape or deform, and these deformations can be quantified by knowing the displacements of
material points in the body. The continuum hypothesis establishes a displacement field at all
points within the elastic solid. Using appropriate geometry, particular measures of deformation
can be constructed leading to the development of the strain tensor. As expected, the strain
components are related to the displacement field. The purpose of this chapter is to introduce the
basic definitions of displacement and strain, establish relations between these two field
quantities, and finally investigate requirements to ensure single-valued, continuous displace-
ment fields. As appropriate for linear elasticity, these kinematical results are developed under
the conditions of small deformation theory. Developments in this chapter lead to two funda-
mental sets of field equations: the strain-displacement relations and the compatibility equa-
tions. Further field equation development, including internal force and stress distribution,
equilibrium and elastic constitutive behavior, occurs in subsequent chapters.

2.1 General Deformations

Under the application of external loading, elastic solids deform. A simple two-dimensional
cantilever beam example is shown in Figure 2-1. The undeformed configuration is taken with
the rectangular beam in the vertical position, and the end loading displaces material points to
the deformed shape as shown. As is typical in most problems, the deformation varies from
point to point and is thus said to be nonhomogenous. A superimposed square mesh is shown in
the two configurations, and this indicates how elements within the material deform locally. It is
apparent that elements within the mesh undergo extensional and shearing deformation. An
elastic solid is said to be deformed or strained when the relative displacements between points
in the body are changed. This is in contrast to rigid-body motion where the distance between
points remains the same.

In order to quantify deformation, consider the general example shown in Figure 2-2. In the
undeformed configuration, we identify two neighboring material points P, and P connected with
the relative position vector r as shown. Through a general deformation, these points are mapped
to locations P/ and P’ in the deformed configuration. For finite or large deformation theory, the
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FIGURE 2-1 Two-dimensional deformation example.
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FIGURE 2-2  General deformation between two neighboring points.

undeformed and deformed configurations can be significantly different, and a distinction
between these two configurations must be maintained leading to Lagrangian and Eulerian
descriptions; see, for example, Malvern (1969) or Chandrasekharaiah and Debnath (1994).
However, since we are developing linear elasticity, which uses only small deformation theory,

the distinction between undeformed and deformed configurations can be dropped.
Using Cartesian coordinates, define the displacement vectors of points P, and P to be u’ and

u, respectively. Since P and P, are neighboring points, we can use a Taylor series expansion

around point P, to express the components of u as
ou Ou Ou
r;

u=u +a”+a_y’y+5 z
., OV ov v
V=1 +arx+a—yl‘y+5rz @2.1.1)
ow ow — Ow
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Note that the higher-order terms of the expansion have been dropped since the components of r
are small. The change in the relative position vector r can be written as

Ar=r —-r=u—-u’ (2.1.2)

and using (2.1.1) gives

Ar, = e +8_ny —i—a—rz
Ov ov ov
Ary, = arx + 8_yry + Er_, (2.1.3)
A ow n ow n ow
r,=—ry+—r,+—r.
oox Y oy ozt
or in index notation
Arj = u; jrj (2.1.4)

The tensor u; ; is called the displacement gradient tensor, and may be written out as

Ox Oy Oz
av v Ov
Ui j = a a—y E (215)
ow ow ow
Oox Oy Oz

From relation (1.2.10), this tensor can be decomposed into symmetric and antisymmetric
parts as

Ui j = ejj + wj (2.1.6)
where

1
ej = 5(141',,' +uj,1)

1
wij = 5 (i,j = j,.)

(2.1.7)

The tensor ¢;; is called the strain tensor, while wj; is referred to as the rotation tensor. Relations
(2.1.4) and (2.1.6) thus imply that for small deformation theory, the change in the relative
position vector between neighboring points can be expressed in terms of a sum of strain and
rotation components. Combining relations (2.1.2), (2.1.4), and (2.1.6), and choosing r; = dx;,
we can also write the general result in the form

up = uj + ejdx; + wydx; 2.1.8)

Because we are considering a general displacement field, these results include both strain
deformation and rigid-body motion. Recall from Exercise 1-14 that a dual vector w; can
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be associated with the rotation tensor such that w; = —1/2¢;wj. Using this definition, it is

found that

o o (2 0)
2 8x2 (9)63
1 /Ou; Ous

w2:w13:§<87x3—afxl)

o =1 (2 0)
P T2 oy ox

(2.1.9)

which can be expressed collectively in vector format as @ = (1/2)(V X u). As is shown in the
next section, these components represent rigid-body rotation of material elements about
the coordinate axes. These general results indicate that the strain deformation is related to the
strain tensor ¢;;, which in turn is a related to the displacement gradients. We next pursue a more
geometric approach and determine specific connections between the strain tensor components

and geometric deformation of material elements.

2.2 Geometric Construction of Small Deformation Theory

Although the previous section developed general relations for small deformation theory, we
now wish to establish a more geometrical interpretation of these results. Typically, elasticity
variables and equations are field quantities defined at each point in the material continuum.
However, particular field equations are often developed by first investigating the behavior of
infinitesimal elements (with coordinate boundaries), and then a limiting process is invoked that
allows the element to shrink to a point. Thus, consider the common deformational behavior of
a rectangular element as shown in Figure 2-3. The usual types of motion include rigid-body
rotation and extensional and shearing deformations as illustrated. Rigid-body motion does not
contribute to the strain field, and thus also does not affect the stresses. We therefore focus our

study primarily on the extensional and shearing deformation.

Figure 2-4 illustrates the two-dimensional deformation of a rectangular element with
original dimensions dx by dy. After deformation, the element takes a rhombus form as
shown in the dotted outline. The displacements of various corner reference points are indicated

(Undeformed Element) (Rigid Body Rotation)

(Horizontal Extension) (Vertical Extension) (Shearing Deformation)

FIGURE 2-3 Typical deformations of a rectangular element.
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FIGURE 2-4 Two-dimensional geometric strain deformation.

in the figure. Reference point A is taken at location (x,y), and the displacement components of
this point are thus u(x,y) and v(x,y). The corresponding displacements of point B are
u(x + dx,y) and v(x + dx,y), and the displacements of the other corner points are defined in
an analogous manner. According to small deformation theory, u(x+ dx,y) = u(x,y)+
(Ou/0x) dx, with similar expansions for all other terms.

The normal or extensional strain component in a direction n is defined as the change in
length per unit length of fibers oriented in the n-direction. Normal strain is positive if fibers
increase in length and negative if the fiber is shortened. In Figure 2-4, the normal strain in the x
direction can thus be defined by

A'B' — AB

&= AR

From the geometry in Figure 2-4,

ou 2 Ov 2 ou ou 2 ov 2 ou

where, consistent with small deformation theory, we have dropped the higher-order terms.
Using these results and the fact that AB = dx, the normal strain in the x-direction reduces to

ou
= — 2.2.1
b= ( )
In similar fashion, the normal strain in the y-direction becomes
ov
= 2.2.2
8)’ ay ( )

A second type of strain is shearing deformation, which involves angles changes (see Figure
2-3). Shear strain is defined as the change in angle between two originally orthogonal
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directions in the continuum material. This definition is actually referred to as the engineering
shear strain. Theory of elasticity applications generally use a tensor formalism that requires a
shear strain definition corresponding to one-half the angle change between orthogonal axes;
see previous relation (2.1.7);. Measured in radians, shear strain is positive if the right angle
between the positive directions of the two axes decreases. Thus, the sign of the shear strain
depends on the coordinate system. In Figure 2-4, the engineering shear strain with respect to
the x- and y-directions can be defined as

T
Ty = 5~ (IC'AB =a+ B
For small deformations, o &~ tan « and f§ & tan f§, and the shear strain can then be expressed as

ov u

dx Sody
0 0
Vg = 8xau + 3yav = 8—” + é (2.2.3)
dx+—dx dy+—dy 4
Ox Ay

where we have again neglected higher-order terms in the displacement gradients. Note that
each derivative term is positive if lines AB and AC rotate inward as shown in the figure. By
simple interchange of x and y and u and v, it is apparent that y,, = 7,,.

By considering similar behaviors in the y-z and x-z planes, these results can be easily
extended to the general three-dimensional case, giving the results:

L
TTe R ey e 2.2.4)
Oou v v a_w 0w Ou -

Vx}':8_y+a’ yyz*az_kay’ sz*g‘kg

Thus, we define three normal and three shearing strain components leading to a total of six
independent components that completely describe small deformation theory. This set of
equations is normally referred to as the strain-displacement relations. However, these results
are written in terms of the engineering strain components, and tensorial elasticity theory
prefers to use the strain tensor ¢;; defined by (2.1.7);. This represents only a minor change
because the normal strains are identical and shearing strains differ by a factor of one-half; for
example, e;; = e, =g, and ep = ey = 1/ ZVW, and so forth.

Therefore, using the strain tensor e;;, the strain-displacement relations can be expressed in
component form as

(D O, 0w
TTox”T oy T oz 22.5)
1 8u+8v 1 6v+8w 1 6w+6u -
ey=xlmgt+x ) o=zt 5 ). ex=55-+5
T2 \gy  ox ¥ 2\oz oy =T 2\0x 0z
Using the more compact tensor notation, these relations are written as
1

eij =5 (i, + uj,i) (2.2.6)
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while in direct vector/matrix notation as the form reads:

e= % [Vu + (Vu)T]

(2.2.7)
where e is the strain matrix and Vu is the displacement gradient matrix and (Vu)” is its
transpose.

The strain is a symmetric second-order tensor (e;; = e;;) and is commonly written in matrix
format:

Cxy €y

(2.2.8)
eyz e;

Before we conclude this geometric presentation, consider the rigid-body rotation of our two-

dimensional element in the x-y plane, as shown in Figure 2-5. If the element is rotated through
a small rigid-body angular displacement about the z-axis, using the bottom element edge, the

rotation angle is determined as dv/0x, while using the left edge, the angle is given by —du/dy.
These two expressions are of course the same; that is, 9v/0x = —Ju/dy and note that this
would imply e,, = 0. The rotation can then be expressed as w, = [(Ov/9x) — (Ju/0y)]/2,
which matches with the expression given earlier in (2.1.9);. The other components of rotation
follow in an analogous manner.

Relations for the constant rotation w, can be integrated to give the result:

u* =u, —w;
o Ty (2.2.9)

VvE =y, + w,x
where u, and v, are arbitrary constant translations in the x- and y-directions. This result
then specifies the general form of the displacement field for two-dimensional rigid-body
motion. We can easily verify that the displacement field given by (2.2.9) yields zero strain.
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FIGURE 2-5 Two-dimensional rigid-body rotation.
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For the three-dimensional case, the most general form of rigid-body displacement can be
expressed as

u* =u, — w:y +wyz
VE =V, — wWeZ + w,X (2.2.10)

W =w, — wyX + wyy

As shown later, integrating the strain-displacement relations to determine the displacement
field produces arbitrary constants and functions of integration, which are equivalent to rigid-
body motion terms of the form given by (2.2.9) or (2.2.10). Thus, it is important to recognize
such terms because we normally want to drop them from the analysis since they do not
contribute to the strain or stress fields.

2.3 Strain Transformation

Because the strains are components of a second-order tensor, the transformation theory
discussed in Section 1.5 can be applied. Transformation relation (1.5.1); is applicable for
second-order tensors, and applying this to the strain gives

el = QipQjgepq (2.3.1)
where the rotation matrix Q;; = cos (x}, x;). Thus, given the strain in one coordinate system,

we can determine the new components in any other rotated system. For the general three-
dimensional case, define the rotation matrix as

11 nm; n
Oi=\|b m m (2.3.2)
I3 my n3

Using this notational scheme, the specific transformation relations from equation (2.3.1) become

/ 2 2 2

e, = edldi +emi + e:ny + 2eylimy + eyoming + e;nily)
/ 2 2 2

e, = el +eym; + e:ny + 2(exylhmy + ey.myny + enolh)

e; = exlg + eymg + e_m% + 2(exyl3m3 + ey.m3nz + e n3l3) 233)
ey = eily + eymimy + e:mmy + ex(lhmy + mib) + ey(miny + nimy) + ex(mby + lino) -
e;z = exhl3 + eymamsz + e:nans + ey (lamz + myl3) + ey.(manz + nams) + e (nalz + lhns)

el = elzly + eymzmy + exn3ny + ey (lamy + msly) + ey(many + n3my) + ex(n3ly + lny)

For the two-dimensional case shown in Figure 2-6, the transformation matrix can be ex-
pressed as

cos@ sinf O
Q= | —sinl cosO 0 2.3.4)
0 0 1
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FIGURE 2-6 Two-dimensional rotational transformation.

Under this transformation, the in-plane strain components transform according to

¢ =e,cos’ 0+ ey sin? 0 + 2e,y sin0cos 0

¢ = e.sin? 0+ ey cos? 0 — 2e,y sin0 cos 0 (2.3.5)

e, = —e,sinfcos 0 + e, sin 0 cos 0 + e ( cos? 6 — sin® 0)

which is commonly rewritten in terms of the double angle:

e — €x Jrey _'_%Coszg—}— €y sin 20

X 2
X + y x .
¢ = % - %cos 20 — e,y sin20 (2.3.6)
;e —ey .
e = sin20 + e, cos 20

Xy

Transformation relations (2.3.6) can be directly applied to establish transformations between
Cartesian and polar coordinate systems (see Exercise 2-6). Additional applications of these
results can be found when dealing with experimental strain gage measurement systems. For
example, standard experimental methods using a rosette strain gage allow the determination of
extensional strains in three different directions on the surface of a structure. Using this type
of data, relation (2.3.6); can be repeatedly used to establish three independent equations
that can be solved for the state of strain (ey,e,,ey,) at the surface point under study (see
Exercise 2-7).

Both two- and three-dimensional transformation equations can be easily incorporated in
MATLARB to provide numerical solutions to problems of interest. Such examples are given in
Exercises 2-8 and 2-9.

2.4 Principal Strains

From the previous discussion in Section 1.6, it follows that because the strain is a symmetric
second-order tensor, we can identify and determine its principal axes and values. According to
this theory, for any given strain tensor we can establish the principal value problem and solve
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the characteristic equation to explicitly determine the principal values and directions. The
general characteristic equation for the strain tensor can be written as

det[e,-j — 65,'1'] = ¢ + 9162 — e+ =0 (2.4.1)

where e is the principal strain and the fundamental invariants of the strain tensor can be
expressed in terms of the three principal strains ej, ez, €3 as

Y =e+e+e;
9 = ej1es + ere3 + e3eq (2.4.2)

93 = e1epe3

The first invariant 3; = 9 is normally called the cubical dilatation, because it is related to the
change in volume of material elements (see Exercise 2-11).
The strain matrix in the principal coordinate system takes the special diagonal form

4] 0 0
eij = 0 (%) 0 (243)
0 0 es

Notice that for this principal coordinate system, the deformation does not produce any
shearing and thus is only extensional. Therefore, a rectangular element oriented along
principal axes of strain will retain its orthogonal shape and undergo only extensional deform-
ation of its sides.

2.5 Spherical and Deviatoric Strains

In particular applications it is convenient to decompose the strain tensor into two parts called
spherical and deviatoric strain tensors. The spherical strain is defined by

_ 1 1

while the deviatoric strain is specified as

. 1
eij = eij — gekkéij (252)

Note that the total strain is then simply the sum
ejj = é,‘j + é,:,‘ (253)

The spherical strain represents only volumetric deformation and is an isotropic tensor,
being the same in all coordinate systems (as per the discussion in Section 1.5). The deviatoric
strain tensor then accounts for changes in shape of material elements. It can be shown
that the principal directions of the deviatoric strain are the same as those of the strain
tensor.
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3 Stress and Equilibrium

The previous chapter investigated the kinematics of deformation without regard to the force or
stress distribution within the elastic solid. We now wish to examine these issues and explore
the transmission of forces through deformable materials. Our study leads to the definition and
use of the traction vector and stress tensor. Each provides a quantitative method to describe
both boundary and internal force distributions within a continuum solid. Because it is com-
monly accepted that maximum stresses are a major contributing factor to material failure,
primary application of elasticity theory is used to determine the distribution of stress within a
given structure. Related to these force distribution issues is the concept of equilibrium. Within
a deformable solid, the force distribution at each point must be balanced. For the static case,
the summation of forces on an infinitesimal element is required to be zero, while for a dynamic
problem the resultant force must equal the mass times the element’s acceleration. In this
chapter, we establish the definitions and properties of the traction vector and stress tensor and
develop the equilibrium equations, which become another set of field equations necessary in
the overall formulation of elasticity theory. It should be noted that the developments in this
chapter do not require that the material be elastic, and thus in principle these results apply to a
broader class of material behavior.

3.1 Body and Surface Forces

When a structure is subjected to applied external loadings, internal forces are induced
inside the body. Following the philosophy of continuum mechanics, these internal forces are
distributed continuously within the solid. In order to study such forces, it is convenient to
categorize them into two major groups, commonly referred to as body forces and surface
forces.

Body forces are proportional to the body’s mass and are reacted with an agent outside of the
body. Examples of these include gravitational-weight forces, magnetic forces, and inertial
forces. Figure 3-1(a) shows an example body force of an object’s self-weight. By using
continuum mechanics principles, a body force density (force per unit volume) F(x) can be
defined such that the total resultant body force of an entire solid can be written as a volume
integral over the body
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Body Forces: F(x)

NN
SR

Surface Forces: T(x)

S
(b) Sectioned Axially Loaded Beam

FIGURE 3-1 Examples of body and surface forces.

Fr = ”J F(x)dV (3.1.1)
JJv

Surface forces always act on a surface and result from physical contact with another
body. Figure 3-1(b) illustrates surface forces existing in a beam section that has been
created by sectioning the body into two pieces. For this particular case, the surface S
is a virtual one in the sense that it was artificially created to investigate the nature
of the internal forces at this location in the body. Again the resultant surface force
over the entire surface S can be expressed as the integral of a surface force density function
T"(x)

Fs = JJ T"(x)dS (3.1.2)
s

The surface force density is normally referred to as the traction vector and is discussed in
more detail in the next section. In the development of classical elasticity, distributions
of body or surface couples are normally not included. Theories that consider such force
distributions have been constructed in an effort to extend classical elasticity for applications
in micromechanical modeling. Such approaches are normally called micropolar or couple-
stress theory (see Eringen 1968) and are briefly presented in Chapter 14.
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3.2 Traction Vector and Stress Tensor

In order to quantify the nature of the internal distribution of forces within a continuum solid,
consider a general body subject to arbitrary (concentrated and distributed) external loadings, as
shown in Figure 3-2. To investigate the internal forces, a section is made through the body as
shown. On this section consider a small area 4A with unit normal vector n. The resultant
surface force acting on AA is defined by AF. Consistent with our earlier discussion, no
resultant surface couple is included. The stress or traction vector is defined by

AF
T"(x,n) :Alfixriloﬂ (3.2.1)

Notice that the traction vector depends on both the spatial location and the unit normal vector
to the surface under study. Thus, even though we may be investigating the same point, the
traction vector still varies as a function of the orientation of the surface normal. Because the
traction is defined as force per unit area, the total surface force is determined through
integration as per relation (3.1.2). Note, also, the simple action-reaction principle (Newton’s
third law)

T"(x,n) = —T"(x, — n)

Consider now the special case in which AA coincides with each of the three coordinate planes
with the unit normal vectors pointing along the positive coordinate axes. This concept is shown
in Figure 3-3, where the three coordinate surfaces for AA partition off a cube of material. For
this case, the traction vector on each face can be written as

Tn(x) n=e)) =0 + Txy€2 + T3
T"(x,n = e;) = 1| + 0y€r + Ty.€3 (3.2.2)

T"(x,n = e3) = T.ce; + T;ye; + 0.3

where e}, e;, e3 are the unit vectors along each coordinate direction, and the nine quantities
{0y, 0y, 02, Tay, Tyxs Ty, Tz, Toxs Taz) are the components of the traction vector on each of
three coordinate planes as illustrated. These nine components are called the stress components,

1
(Externally Loaded Body) (Sectioned Body)

FIGURE 3-2 Sectioned solid under external loading.
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FIGURE 3-3 Components of the stress.

with 0., o,, 0. referred to as normal stresses and Ty, Ty, Tyz, Tzy, Tz, Ty Called the shear-
ing stresses. The components of stress ¢;; are commonly written in matrix format

o=[0o]l= |1 0, Ty (3.2.3)
Tox sz O

and it can be formally shown that the stress is a second-order tensor that obeys the appropriate
transformation law (1.5.3);.

The positive directions of each stress component are illustrated in Figure 3-3. Regardless of
the coordinate system, positive normal stress always acts in tension out of the face, and only
one subscript is necessary because it always acts normal to the surface. The shear stress,
however, requires two subscripts, the first representing the plane of action and the second
designating the direction of the stress. Similar to shear strain, the sign of the shear stress
depends on coordinate system orientation. For example, on a plane with a normal in the
positive x direction, positive T, acts in the positive y direction. Similar definitions follow for
the other shear stress components. In subsequent chapters, proper formulation of elasticity
problems requires knowledge of these basic definitions, directions, and sign conventions for
particular stress components.

Consider next the traction vector on an oblique plane with arbitrary orientation, as
shown in Figure 3-4. The unit normal to the surface can be expressed by

n = n.e; + nye; + n.e; (3.2.3)

where ny, ny, n. are the direction cosines of the unit vector n relative to the given coordinate
system. We now consider the equilibrium of the pyramidal element interior to the oblique and
coordinate planes. Invoking the force balance between tractions on the oblique and coordinate
faces gives
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Tn

z

FIGURE 3-4 Traction on an oblique plane.

" =nT"(n=e)+nT"(n=e)+nT"{n=e)
and by using relations (3.2.2), this can be written as

T" = (0.1, + TyxNy + TuN2)e]
+ (Tyny + oyny, + Tyn2)e; (3.2.4)

+ (T, + Ty: 1y + a.n;)e;
or in index notation
Tln = 0;in; (325)

Relation (3.2.4) or (3.2.5) provides a simple and direct method to calculate the forces on
oblique planes and surfaces. This technique proves to be very useful to specify general
boundary conditions during the formulation and solution of elasticity problems.

Following the principles of small deformation theory, the previous definitions for the
stress tensor and traction vector do not make a distinction between the deformed and un-
deformed configurations of the body. As mentioned in the previous chapter, such a distinction
only leads to small modifications that are considered higher-order effects and are normally
neglected. However, for large deformation theory, sizeable differences exist between
these configurations, and the undeformed configuration (commonly called the reference
configuration) is often used in problem formulation. This gives rise to the definition of an
additional stress called the Piola-Kirchhoff stress tensor that represents the force per unit
area in the reference configuration (see Chandrasekharaiah and Debnath 1994). In the
more general scheme, the stress g;; is referred to as the Cauchy stress tensor. Throughout
the text only small deformation theory is considered, and thus the distinction between
these two definitions of stress disappears, thereby eliminating any need for this additional
terminology.
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3.3 Stress Transformation

Analogous to our previous discussion with the strain tensor, the stress components must also
follow the standard transformation rules for second-order tensors established in Section 1.5.
Applying transformation relation (1.5.1); for the stress gives

0 = QipQigOpq (3.3.1)

where the rotation matrix Q; = cos (x;»,xj). Therefore, given the stress in one coordinate
system, we can determine the new components in any other rotated system. For the general
three-dimensional case, the rotation matrix may be chosen in the form

11 nmq np
Oi=|h m m (3.3.2)
l3 ms ns

Using this notational scheme, the specific transformation relations for the stress then become

'
Oy
'

g, = leg + aym% + azng + 2ty lamy + Tyomong + Tm3l)

= oxl% + aym% + a_,n% + 2(tlymy + tyomyng + 0 ly)

a; = a,\.lg + a_vm§ + O'_Jl% + 2ty l3ms + ty.m3nz + 1,:1313) (33.3)
;.y = oylily + oymymy + a.nyny + Ty (limy + myly) 4 ty.(myny + nymy) + (i ly + Iino) o

=)
|

= 0,hbl3 + oymams + 0:nyn3 + T (lbms + mylz) + T,.(man3 + nom3z) + 1o (n2lz + hnz)

T, = o3l + aymzmy + o.n3ny + Ty (l3my + msly) + Ty (mzng + n3my) + to(nzly + Lng)

For the two-dimensional case originally shown in Figure 2-6, the transformation matrix was
given by relation (2.3.4). Under this transformation, the in-plane stress components transform
according to

a; =g, cos’ 0+ oy sin 0 + 27,y sin0 cos 0
o; =g, sin’ 0 + gy cos? 0 — 27,y sinfcos 0 (3.3.4)
r’xy = —o,sinfcos 0 + o, sin 0 cos 0 + 7.( cos? 6 — sin® 0)

which is commonly rewritten in terms of the double angle

/ Ox+ 0y Oy—0y

o, = 5 + TCOS 20 + 1, sin 20
0; = % — Qcos 20 — 1,y sin20 (3.3.5)
’ O'y — Oy

A
I

== sin20 + 7, cos 20

Similar to our discussion on strain in the previous chapter, relations (3.3.5) can be directly
applied to establish stress transformations between Cartesian and polar coordinate systems
(see Exercise 3-3). Both two- and three-dimensional stress transformation equations can be
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easily incorporated in MATLAB to provide numerical solution to problems of interest (see
Exercise 3-2).

3.4 Principal Stresses

We can again use the previous developments from Section 1.6 to discuss the issues of principal
stresses and directions. It is shown later in the chapter that the stress is a symmetric tensor.
Using this fact, appropriate theory has been developed to identify and determine principal axes
and values for the stress. For any given stress tensor we can establish the principal value
problem and solve the characteristic equation to explicitly determine the principal values and
directions. The general characteristic equation for the stress tensor becomes

det[o;; — 6] = —a° + 116° — Lo +13=0 (3.4.1)

where ¢ are the principal stresses and the fundamental invariants of the stress tensor can be
expressed in terms of the three principal stresses a1, 07,03 as

Iy =014+ 0,4+ 03
I, =010, + 0,03 + 630, (3.4.2)

]3 = 010203

In the principal coordinate system, the stress matrix takes the special diagonal form

g1 0 0
;=10 o 0O (3.4.3)
0 0 03

A comparison of the general and principal stress states is shown in Figure 3-5. Notice that for
the principal coordinate system, all shearing stresses vanish and thus the state includes only
normal stresses. These issues should be compared to the equivalent comments made for the
strain tensor at the end of Section 2.4.

&

y
T % 2
A \ o

V1T,
Ty ¥ X Z / 1
Xy
Tzy ;Té -
>

% X
Tox | 7, —
oy, X

e /s

(General Coordinate System) (Principal Coordinate System)

FIGURE 3-5 Comparison of general and principal stress states.
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FIGURE 3-6 Traction vector decomposition.

We now wish to go back to investigate another issue related to stress and traction
transformation that makes use of principal stresses. Consider the general traction vector T"
that acts on an arbitrary surface as shown in Figure 3-6. The issue of interest is to determine the
traction vector’s normal and shear components N and S. The normal component is simply the
traction’s projection in the direction of the unit normal vector r, while the shear component is
found by Pythagorean theorem,

N=Ton (3.4.4)
S:(‘Tn|27N2)1/2 h
Using the relationship for the traction vector (3.2.5) into (3.4.4),; gives
N=T"-n=T'n = ojinn;
P (3.4.5)

2 2 2
o1h] + an; + a3n3

where, in order to simplify the expressions, we have used the principal axes for the stress
tensor. In a similar manner,

2
‘Tn‘ =T".-T" = TI”Tln = 0iN;j0 ;N

(3.4.6)
= oini +03n3 + o33
Using these results back into relation (3.4.4) yields
N = 611 + oam3 + o33
2 2 22, 22, 22 3.4.7)
S§°+ N = oin] + o315 + o313
In addition, we also add the condition that the vector n has unit magnitude
1 =ni+n5+n (3.4.8)

Relations (3.4.7) and (3.4.8) can be viewed as three linear algebraic equations for the
unknowns 73,73, n3. Solving this system gives the following result:
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2 S+ (N —0)(N —03)
(01— 02)(01 — 03)
$2 + (N — a3)(N — 01)
(02 — 03)(02 — 01)
S+ (N — )N — 02)

(03 — 01)(03 — 02)

"= (3.4.9)

2 _
ny =

Without loss in generality, we can rank the principal stresses as g; > ¢, > ¢3. Noting that the
expressions given by (3.4.9) must be greater than or equal to zero, we can conclude the following

§*+ (N = 02)(N — 03) > 0
S2+ (N —03)(N—a1) <0 (3.4.10)
2+ (N —0)(N —02) >0

For the equality case, equations (3.4.10) represent three circles in an S-N coordinate system,
and Figure 3-7 illustrates the location of each circle. These results were originally generated by
Otto Mohr over a century ago, and the circles are commonly called Mohr’s circles of stress.
The three inequalities given in (3.4.10) imply that all admissible values of N and S lie in
the shaded regions bounded by the three circles. Note that, for the ranked principal stresses, the
largest shear component is easily determined as S, = 1/2|61 — 03|. Although these circles
can be effectively used for two-dimensional stress transformation, the general tensorial-based
equations (3.3.3) are normally used for general transformation computations.

S2+(N-06)(N-0635) =0

r <

S2+(N-o,)(N-0,)=0

S2+(N-o6)(N-06,)=0

FIGURE 3-7 Mohr’s circles of stress.
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EXAMPLE 3-1: Stress Transformation

For the following state of stress, determine the principal stresses and directions and find
the traction vector on a plane with unit normal r = (0, 1,1)/ V2.

311
g = 1 0 2
1 20

The principal stress problem is started by calculating the three invariants, giving
the result I} =3, I, = —6, I3 = —8. This yields the following characteristic equa-
tion:

—0°+36°4+66—-8=0

The roots of this equation are found to be ¢ = 4, 1, — 2. Back-substituting the first root
into the fundamental system (see 1.6.1) gives

a4 =
A~ 4n) 4 20D — 0
n(ll) + 2n(21) — 4ngl) =0

Solving this system, the normalized principal direction is found to be D =(2,1,1) /
v/6. In similar fashion the other two principal directions are n®=(1,1,1 /

V3, 0 =0, —1, )/V2,

The traction vector on the specified plane is calculated by using the relation

301 1 0 2/V2
T"=11 0 2|[1/V2|=|2/v2
1 2 0][1/v2 2/V2

3.5 Spherical and Deviatoric Stresses

As mentioned in our previous discussion on strain, it is often convenient to decompose the
stress into two parts called the spherical and deviatoric stress tensors. Analogous to relations
(2.5.1) and (2.5.2), the spherical stress is defined by

1

&ij :gakkéi/ (351)
while the deviatoric stress becomes
. 1
0jj = 0jj — 50/{]{5[/‘ (352)
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Note that the total stress is then simply the sum
O',j:&,'j'+6'17 (3.5.3)
The spherical stress is an isotropic tensor, being the same in all coordinate systems (as per

discussion in Section 1.5). It can be shown that the principal directions of the deviatoric stress
are the same as those of the stress tensor (see Exercise 3-8).

3.6 Equilibrium Equations

The stress field in an elastic solid is continuously distributed within the body and uniquely
determined from the applied loadings. Because we are dealing primarily with bodies in
equilibrium, the applied loadings satisfy the equations of static equilibrium; that is, the
summation of forces and moments is zero. If the entire body is in equilibrium, then all parts
must also be in equilibrium. Thus, we can partition any solid into an appropriate subdomain
and apply the equilibrium principle to that region. Following this approach, equilibrium
equations can be developed that express the vanishing of the resultant force and moment at
a continuum point in the material. These equations can be developed by using either an
arbitrary finite subdomain or a special differential region with boundaries coinciding with
coordinate surfaces. We shall formally use the first method in the text, and the second scheme
is included in Exercises 3-10 and 3-11.

Consider a closed subdomain with volume V and surface S within a body in equilibrium.
The region has a general distribution of surface tractions 7" body forces F as shown in Figure
3-8. For static equilibrium, conservation of linear momentum implies that the forces acting on
this region are balanced and thus the resultant force must vanish. This concept can be easily

written in index notation as
” T!dS + J” FdV =0 3.6.1)
S 1%

Using relation (3.2.5) for the traction vector, we can express the equilibrium statement in terms
of stress:

Tn

FIGURE 3-8 Body and surface forces acting on arbitrary portion of a continuum.
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” ojinidS + ”J FidV =0 (3.6.2)
N Vv

Applying the divergence theorem (1.8.7) to the surface integral allows the conversion to a
volume integral, and relation (3.6.2) can then be expressed as

”J (0ji,j + F)dV =0 (3.6.3)
v

Because the region V is arbitrary (any part of the medium can be chosen) and the integrand
in (3.6.3) is continuous, then by the zero-value theorem (1.8.12), the integrand must
vanish:

6 +Fi=0 (3.6.4)

This result represents three scalar relations called the equilibrium equations. Written in scalar
notation they are

0o, Oty 01y

F. =
ax "oy Ta TR0
oty Ooy, Ot

—_— F, = .6.
oyt e th =0 (3.6.5)
O0ty.  0ty.  Oo:

—+—+4+F,=
8x+8y+8z+ :=0

Thus, all elasticity stress fields must satisfy these relations in order to be in static equilib-
rium.

Next consider the angular momentum principle that states that the moment of all
forces acting on any portion of the body must vanish. Note that the point about which the
moment is calculated can be chosen arbitrarily. Applying this principle to the region shown in

Figure 3-8 results in a statement of the vanishing of the moments resulting from surface and
body forces:

“ e T dS + ”J e XiFrdV =0 (3.6.6)
N v

Again using relation (3.2.5) for the traction, (3.6.6) can be written as

J[ SIYkaajknldS + [ﬁ[ 8iijijdV =0
JS JJIJV

and application of the divergence theorem gives

JJJ [Eixioun), + ejpxiFildV =0
v

60 FOUNDATIONS AND ELEMENTARY APPLICATIONS

TLFeBOOK



This integral can be expanded and simplified as
JJJ LeinXx), 10m + eipXjon,; + euxiFildV =
v
j” legkdjion + ejxjon, 1 + epxiFrldV =
%
”J [k — eiwXiFr + eipXiFaldV = J” eijajedV
% v

where we have used the equilibrium equations (3.6.4) to simplify the final result. Thus, (3.6.6)

now gives
JJJ Sijkﬂjkdv =0
v

As per our earlier arguments, because the region V is arbitrary, the integrand must vanish,
giving g0 = 0. However, because the alternating symbol is antisymmetric in indices jk, the
other product term ¢ must be symmetric, thus implying

Ty = Tyx
Ojj = 0ji = Ty; = Tzy (3.6.7)
Tox = Tz

We thus find that, similar to the strain, the stress tensor is also symmetric and therefore has
only six independent components in three dimensions. Under these conditions, the equilibrium
equations can then be written as

G+ Fi=0 (3.6.8)

3.7 Relations in Curvilinear Cylindrical and Spherical
Coordinates

As mentioned in the previous chapter, in order to solve many elasticity problems, formulation
must be done in curvilinear coordinates typically using cylindrical or spherical systems. Thus,
by following similar methods as used with the strain-displacement relations, we now wish to
develop expressions for the equilibrium equations in curvilinear cylindrical and spherical
coordinates. By using a direct vector/matrix notation, the equilibrium equations can be
expressed as

V-o+F=0 (3.7.1)

where o = ojje;e; is the stress matrix or dyadic, e; are the unit basis vectors in the
curvilinear system, and F is the body force vector. The desired curvilinear expressions can
be obtained from (3.7.1) by using the appropriate form for V - o~ from our previous work in
Section 1.9.
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4 Material Behavior—Linear Elastic Solids

The previous two chapters establish elasticity field equations related to the kinematics of
small deformation theory and the equilibrium of the associated internal stress field. Based
on these physical concepts, three strain-displacement relations (2.2.5), six compatibility
equations (2.6.2), and three equilibrium equations (3.6.5) were developed for the general
three-dimensional case. Because moment equilibrium simply results in symmetry of the stress
tensor, it is not normally included as a separate field equation set. Also, recall that the
compatibility equations actually represent only three independent relations, and these equa-
tions are needed only to ensure that a given strain field will produce single-valued continuous
displacements. Because the displacements are included in the general problem formulation, the
solution automatically gives continuous displacements, and the compatibility equations are not
formally needed for the general system. Thus, excluding the compatibility relations, it is found
that we have now developed nine field equations. The unknowns in these equations include 3
displacement components, 6 components of strain, and 6 stress components, yielding a total of
15 unknowns. Thus, the 9 equations are not sufficient to solve for the 15 unknowns, and
additional field equations are needed. This result should not be surprising since up to this point
in our development we have not considered the material response. We now wish to complete
our general formulation by specializing to a particular material model that provides reasonable
characterization of materials under small deformations. The model we will use is that of a
linear elastic material, a name that categorizes the entire theory. This chapter presents the
basics of the elastic model specializing the formulation for isotropic materials. Related theory
for anisotropic media is developed in Chapter 11. Thermoelastic relations are also briefly
presented for later use in Chapter 12.

4.1 Material Characterization

Relations that characterize the physical properties of materials are called constitutive equa-
tions. Because of the endless variety of materials and loadings, the study and development of
constitutive equations is perhaps one of the most interesting and challenging fields in mechan-
ics. Although continuum mechanics theory has established some principles for systematic
development of constitutive equations (Malvern 1969), many constitutive laws have been
developed through empirical relations based on experimental evidence. Our interest here is
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limited to a special class of solid materials with loadings resulting from mechanical or thermal
effects. The mechanical behavior of solids is normally defined by constitutive stress-strain
relations. Commonly, these relations express the stress as a function of the strain, strain rate,
strain history, temperature, and material properties. We choose a rather simple material model
called the elastic solid that does not include rate or history effects. The model may be
described as a deformable continuum that recovers its original configuration when the loadings
causing the deformation are removed. Furthermore, we restrict the constitutive stress-strain
law to be linear, thus leading to a linear elastic solid. Although these assumptions greatly
simplify the model, linear elasticity predictions have shown good agreement with experimental
data and have provided useful methods to conduct stress analysis. Many structural materials
including metals, plastics, ceramics, wood, rock, concrete, and so forth exhibit linear elastic
behavior under small deformations.

As mentioned, experimental testing is commonly employed in order to characterize the
mechanical behavior of real materials. One such technique is the simple tension test in which a
specially prepared cylindrical or flat stock sample is loaded axially in a testing machine. Strain
is determined by the change in length between prescribed reference marks on the sample and is
usually measured by a clip gage. Load data collected from a load cell is divided by the cross-
sectional area in the test section to calculate the stress. Axial stress-strain data is recorded and
plotted using standard experimental techniques. Typical qualitative data for three types of
structural metals (mild steel, aluminum, cast iron) are shown in Figure 4-1. It is observed that
each material exhibits an initial stress-strain response for small deformation that is approxi-
mately linear. This is followed by a change to nonlinear behavior that can lead to large
deformation, finally ending with sample failure.

For each material the initial linear response ends at a point normally referred to as the
proportional limit. Another observation in this initial region is that if the loading is removed,
the sample returns to its original shape and the strain disappears. This characteristic is the
primary descriptor of elastic behavior. However, at some point on the stress-strain curve
unloading does not bring the sample back to zero strain and some permanent plastic deform-
ation results. The point at which this nonelastic behavior begins is called the elastic limit.
Although some materials exhibit different elastic and proportional limits, many times
these values are taken to be approximately the same. Another demarcation on the stress-strain
curve is referred to as the yield point, defined by the location where large plastic deformation
begins.

Steel

Cast Iron

Aluminum ;

FIGURE 4-1 Typical uniaxial stress-strain curves for three structural metals.
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Because mild steel and aluminum are ductile materials, their stress-strain response indicates
extensive plastic deformation, and during this period the sample dimensions will be changing.
In particular the sample’s cross-sectional area undergoes significant reduction, and the stress
calculation using division by the original area will now be in error. This accounts for the
reduction in the stress at large strain. If we were to calculate the load divided by the true
area, the true stress would continue to increase until failure. On the other hand, cast iron
is known to be a brittle material, and thus its stress-strain response does not show large
plastic deformation. For this material, very little nonelastic or nonlinear behavior is
observed. It is therefore concluded from this and many other studies that a large variety of
real materials exhibits linear elastic behavior under small deformations. This would lead to a
linear constitutive model for the one-dimensional axial loading case given by the relation
o = E¢, where E is the slope of the uniaxial stress-strain curve. We now use this simple
concept to develop the general three-dimensional forms of the linear elastic constitutive
model.

4.2 Linear Elastic Materials—Hooke’s Law

Based on observations from the previous section, in order to construct a general three-
dimensional constitutive law for linear elastic materials, we assume that each stress component
is linearly related to each strain component

oy = Criey + Craey + Cize; + 2C1aeyy + 2Cis¢y. + 2C 16624
gy = Crrex + Cney + Caze; + 206,y + 2Ca5ey; + 2Cxe,
a; = Cs1ex + Cxey + Caze; + 2C34eyy + 2C35ey; + 2C36€2
Ty = Carex + Capey + Cze; + 2Cuseyy + 2Cusey. + 2Chse:,
Ty. = Cs16; + Cszey + Csze; + 2Cs4e,y + 2C55€y; + 2Cs6e:0
T.c = Cg1ex + Carey + Ceze; + 2Cese,y + 2Cq5€y. + 2Cese:0

4.2.1)

where the coefficients C;; are material parameters and the factors of 2 arise because of
the symmetry of the strain. Note that this relation could also be expressed by writing the
strains as a linear function of the stress components. These relations can be cast into a matrix

format as
Ox Cu Cn - - - Cis ex
O’y C21 . . . . . ey
GZ _ . . . . . . eZ
S I O | (422)
Tyz . . . . . . 2eyz
Tox C61 . oo C66 zezx
Relations (4.2.1) can also be expressed in standard tensor notation by writing
O',‘j S C,'jkjekj (423)

where Cjyy is a fourth-order elasticity tensor whose components include all the material
parameters necessary to characterize the material. Based on the symmetry of the stress and
strain tensors, the elasticity tensor must have the following properties (see Exercise 4-1):
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Ci = Cjiut @.2.4)
Ciw = Cijix

In general, the fourth-order tensor C;; has 81 components. However, relations (4.2.4)
reduce the number of independent components to 36, and this provides the required match
with form (4.2.1) or (4.2.2). Later in Chapter 6 we introduce the concept of strain energy, and
this leads to a further reduction to 21 independent elastic components. The components of C;jy
or equivalently C;; are called elastic moduli and have units of stress (force/area). In order to
continue further, we must address the issues of material homogeneity and isotropy.

If the material is homogenous, the elastic behavior does not vary spatially, and thus all elastic
moduli are constant. For this case, the elasticity formulation is straightforward, leading to the
development of many analytical solutions to problems of engineering interest. A homogenous
assumption is an appropriate model for most structural applications, and thus we primarily
choose this particular case for subsequent formulation and problem solution. However, there are
a couple of important nonhomogeneous applications that warrant further discussion.

Studies in geomechanics have found that the material behavior of soil and rock commonly
depends on distance below the earth’s surface. In order to simulate particular geomechanics
problems, researchers have used nonhomogeneous elastic models applied to semi-infinite
domains. Typical applications have involved modeling the response of a semi-infinite soil
mass under surface or subsurface loadings with variation in elastic moduli with depth (see the
review by Poulos and Davis 1974). Another more recent application involves the behavior of
functionally graded materials (FGM) (see Erdogan 1995 and Parameswaran and Shukla 1999,
2002). FGMs are a new class of engineered materials developed with spatially varying
properties to suit particular applications. The graded composition of such materials is com-
monly established and controlled using powder metallurgy, chemical vapor deposition, or
centrifugal casting. Typical analytical studies of these materials have assumed linear, exponen-
tial, and power-law variation in elastic moduli of the form

Cij(x) = Ci(1 + ax)
Ci(x) = C;}e‘” 4.2.5)
Cij(}() = Ciujxa

where Cf; and a are prescribed constants and x is the spatial coordinate. Further investigation of
formulation results for such spatially varying moduli are included in Exercises 5-6 and 7-12 in
subsequent chapters.

Similar to homogeneity, another fundamental material property is isotropy. This property
has to do with differences in material moduli with respect to orientation. For example, many
materials including crystalline minerals, wood, and fiber-reinforced composites have different
elastic moduli in different directions. Materials such as these are said to be anisotropic. Note
that for most real anisotropic materials there exist particular directions where the properties are
the same. These directions indicate material symmetries. However, for many engineering
materials (most structural metals and many plastics), the orientation of crystalline and grain
microstructure is distributed randomly so that macroscopic elastic properties are found to be
essentially the same in all directions. Such materials with complete symmetry are called
isotropic. As expected, an anisotropic model complicates the formulation and solution of
problems. We therefore postpone development of such solutions until Chapter 11 and continue
our current development under the assumption of isotropic material behavior.
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The tensorial form (4.2.3) provides a convenient way to establish the desired isotropic
stress-strain relations. If we assume isotropic behavior, the elasticity tensor must be the same
under all rotations of the coordinate system. Using the basic transformation properties from
relation (1.5.1)s, the fourth-order elasticity tensor must satisfy

Czjkl = Qim an Qkp Qlo] Cmnpq

It can be shown (Chandrasekharaiah and Debnath 1994) that the most general form that
satisfies this isotropy condition is given by

Cijit = by + Boudj + ydidjx (4.2.6)

where «,f3, and y are arbitrary constants. Verification of the isotropy property of form
(4.2.6) is left as Exercise 1-9. Using the general form (4.2.6) in stress-strain relation (4.2.3)
gives

gij = /le‘kk(s,‘j + Zueij “4.2.7)

where we have relabeled particular constants using 4 and p. The elastic constant 4 is called
Lamé’ s constant, and p is referred to as the shear modulus or modulus of rigidity. Some texts
use the notation G for the shear modulus. Equation (4.2.7) can be written out in individual
scalar equations as

o, = AMex + ey +e:) + 2ue,
oy = Mex + ey + ) + 2uey
0. = Mey + e, +e;) + 2pue;

4.2.8)
Ty = zﬂe,\y
Ty, = 2Uey;
Tox = 2.“ezx

Relations (4.2.7) or (4.2.8) are called the generalized Hooke’s law for linear isotropic elastic
solids. They are named after Robert Hooke who in 1678 first proposed that the deformation of
an elastic structure is proportional to the applied force. Notice the significant simplicity of the
isotropic form when compared to the general stress-strain law originally given by (4.2.1). It
should be noted that only two independent elastic constants are needed to describe the
behavior of isotropic materials. As shown in Chapter 11, additional numbers of elastic moduli
are needed in the corresponding relations for anisotropic materials.

Stress-strain relations (4.2.7) or (4.2.8) may be inverted to express the strain in terms of the
stress. In order to do this it is convenient to use the index notation form (4.2.7) and set the two
free indices the same (contraction process) to get

o = B+ 21)e 4.2.9)

This relation can be solved for ej; and substituted back into (4.2.7) to get

1 A
€jj = Z (O'ij - mo'kkézj)
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which is more commonly written as

1+v v
e = —— 0 — = oud; (4.2.10)

where E = pu(34 + 2u) /(A + w) and is called the modulus of elasticity or Young's modulus, and
v = A/[2(A + )] is referred to as Poisson’s ratio. The index notation relation (4.2.10) may be
written out in component (scalar) form giving the six equations

1

e, = z [ax —v(oy, + O'Z)}
1

e, = 7 [ay —v(o, + ox)}
1

e, = 7 [az — (o, + ay)}
1+v 1 4.2.11)

Cry = E Ty = ZTW
1+v 1

6‘); = T'Cyz = ﬂfyz
1+v 1

€y = T‘C:t = ) Tox

Constitutive form (4.2.10) or (4.2.11) again illustrates that only two elastic constants are
needed to formulate Hooke’s law for isotropic materials. By using any of the isotropic forms
of Hooke’s law, it can be shown that the principal axes of stress coincide with the principal
axes of strain (see Exercise 4-4). This result also holds for some but not all anisotropic
materials.

4.3 Physical Meaning of Elastic Moduli

For the isotropic case, the previously defined elastic moduli have simple physical meaning.
These can be determined through investigation of particular states of stress commonly used in
laboratory materials testing as shown in Figure 4-2.

4.3.1 Simple Tension

Consider the simple tension test as discussed previously with a sample subjected to tension
in the x direction (see Figure 4-2). The state of stress is closely represented by the one-
dimensional field

O’,‘j:

S O Q
S O O
S O O

Using this in relations (4.2.10) gives a corresponding strain field

74 FOUNDATIONS AND ELEMENTARY APPLICATIONS

TLFeBOOK



N
p
(o}
:T‘. =
) H p
M T /g

'

(Simple Tension) (Pure Shear) (Hydrostatic Compression)

FIGURE 4-2 Special characterization states of stress.

o o Mmla

Therefore, E =o/e, and is simply the slope of the stress-strain curve, while
v = —e,/e, = —e; /e, is the ratio of the transverse strain to the axial strain. Standard measure-
ment systems can easily collect axial stress and transverse and axial strain data, and thus
through this one type of test both elastic constants can be determined for materials of interest.

4.3.2 Pure Shear
If a thin-walled cylinder is subjected to torsional loading (as shown in Figure 4-2), the state of
stress on the surface of the cylindrical sample is given by

0 0
gj= |1 0
0 0

S O A

Again, by using Hooke’s law, the corresponding strain field becomes

0 t/2u 0O
ej=|7t/20 0 0
0 0 0

and thus the shear modulus is given by u = t/2e,, = 7/ Vx> and this modulus is simply the
slope of the shear stress-shear strain curve.
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4.3.3 Hydrostatic Compression (or Tension)

The final example is associated with the uniform compression (or tension) loading of a cubical
specimen, as shown in Figure 4-2. This type of test would be realizable if the sample was
placed in a high-pressure compression chamber. The state of stress for this case is given by

—p 0 0
(7,:/' = 0 —p 0 = —pé,-j
0 0 —p

This is an isotropic state of stress and the strains follow from Hooke’s law

1—2v
- 0 0
£ 1-2
ejj = 0 - ;vp 0
1-2
0 0 . Evp

The dilatation that represents the change in material volume (see Exercise 2-11) is thus given
by 9 = ey = —3(1 — 2v)p/E, which can be written as

p=—k9 4.3.1)

where k = E/[3(1 — 2v)] is called the bulk modulus of elasticity. This additional elastic
constant represents the ratio of pressure to the dilatation, which could be referred to as the
volumetric stiffness of the material. Notice that as Poisson’s ratio approaches 0.5, the bulk
modulus becomes unbounded and the material does not undergo any volumetric deformation
and hence is incompressible.

Our discussion of elastic moduli for isotropic materials has led to the definition of five
constants 4, u, E, v, and k. However, keep in mind that only two of these are needed to
characterize the material. Although we have developed a few relationships between various
moduli, many other such relations can also be found. In fact, it can be shown that all five elastic
constants are interrelated, and if any two are given, the remaining three can be determined by
using simple formulae. Results of these relations are conveniently summarized in Table 4-1.
This table should be marked for future reference, because it will prove to be useful for
calculations throughout the text.

Typical nominal values of elastic constants for particular engineering materials are given in
Table 4-2. These moduli represent average values, and some variation will occur for specific
materials. Further information and restrictions on elastic moduli require strain energy con-
cepts, which are developed in Chapter 6.

Before concluding this section, we wish to discuss the forms of Hooke’s law in curvilinear
coordinates. Previous chapters have mentioned that cylindrical and spherical coordinates (see
Figures 1-4 and 1-5) are used in many applications for problem solution. Figures 3-9 and 3-10
defined the stress components in each curvilinear system. In regards to these figures, it follows
that the orthogonal curvilinear coordinate directions can be obtained from a base Cartesian
system through a simple rotation of the coordinate frame. For isotropic materials, the elasticity
tensor Cjj; is the same in all coordinate frames, and thus the structure of Hooke’s law remains
the same in any orthogonal curvilinear system. Therefore, form (4.2.8) can be expressed in
cylindrical and spherical coordinates as
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TABLE 4-1 Relations Among Elastic Constants

E v k I A
Ev E _E _E _ BV
! v 31— 2v) 20 +v) A+ —2v)
3% E 3KE 3k(3k — E)
Ek E 6k k 9% _E 9% _E
E—2u UE WE —2p)
E.u E 2 3Gu—E) K 3u—E
Y . 2 E+3.+R E—3.+R ;
Ef/.+R 6 g
3k(1 — 2v) 3ky
1-2 S
e 3kl =2v) Y k 20+ v) I +v
2u(l +v) 2uv
e 21+ v) ! 3(1—2v) # 1—2v
A1+ v)(1 —2v) A1 +v) 21— 2v) )
v, A A — v - E—— 2
v 3y 2y
9ku 3k —2u
kon 6k + 6k + 21 k K k=3n
9k(k — 1) p 3 )
kA 3k — 1 3k — k ;=4 ‘
3 1BL+2p) A 34+ 2u P
# P 20+ 1) 3 K
R=E+97* +2E)
o, = e, +eg +e;) + 2ue, or = Aer + ey + eg) + 2pier
a9 = AMe, + eg+e.) + 2uep oy = Aer + ey + eg) + 2uey
o, = Me, +eg+e.) +2pue. o9 = Meg + ey + ep) + 2pep 432)
T,0 = 245 TRy = 2HeRy -
T = 2fiep; Tpo = 2Hego
Top = 2ptez Tor = 2HegR

The complete set of elasticity field equations in each of these coordinate systems is given in

Appendix A.

4.4 Thermoelastic Constitutive Relations

It is well known that a temperature change in an unrestrained elastic solid produces deform-
ation. Thus, a general strain field results from both mechanical and thermal effects. Within the
context of linear small deformation theory, the total strain can be decomposed into the sum of

mechanical and thermal components as
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Appendix

D




£6

b2

MATHI \TICAL PRELIMINARIES

Show that the invadants of P are Ip = Ilp = 2, [llp = 0, and find the
eigenvalues and eigenvectors of P.

Using a procedure similar to that employed in Equations (2.41-42), obtain trans-
formation equations for the components of third- and fourth-order tensers in two

sets of bases e; and e} that are related by the 3-D transformation tensor Q with

components Qi; = ¢; - €.

. Given any second-order tensor S linearize the expression 5% = 88 in the direc-

tion of an increment U.

. Consider a functional [ that when applied to the function y(x) gives the integral:

b
100) = f Fleoy,y)dx

where f is a general expression involving x, y(x) and the derivative y'(x) =
dy fdx. Show that the function y(x} that renders the above functional stationary
and satisfies the boundary conditions y(a) = Y. and y(b) = ¥ is the solution
of the following Euler—Lagrange differential equation:

é (EJL)_%_O
dx ay’ ay

. Prove Equations (2.135a-g) following the procedure shown in Example 2.10.
. Show that the volume of a closed 3-D body V is variously given as,

V:f nIdA=[ nydA=f n.dA
av av 2%

where n,, ry and 1. are the x, y and £ components of the unit normal n.

CHAPTER THREE

KINEMATICS

3.1 INTRODUCTION

Tt is almost & tautology to say that a proper description of motion is fundamental to
finite deformation analysis, but such an emphasis is necessary because infinitesimal
deformation analysis implies a host of assumptions that we take for granted and
seldom articulate. For example, we have seen in Chapter I, in the simple truss
example, that care needs to be exercised when large deformations are anticipated
and that 2 Tinear definition of strain is totally inadequate in the context of a finite
rotation. A study of finite deformation will require that cherished assumptions be
abandoned and a fresh start made with an open (but not empty!) mind.

Kinematics is the study of motion and deformation without reference to the
cause. We shall see immediately that consideration of finite deformation enables
alternative coordinate systems to be employed, namely, material and spatial de-
seriptions associated with the names of Lagrange and Euler respectively.

Although we are not directly concerned with inertial effects, nevertheless time
derivatives of varicus kinematic quantities enrich our understanding and also pro-
vide the basis for the formulation of the virtual work expression of equilibriwm,
which uses the notion of virtual velocity and associated kinematic quantities.

Wherever appropriate, nonlinear kinematic quantities are linearized in prepa-
ration for inclusion in the linearized equilibrium equations that form the basis of
the Newton~Raphson solution to the finite element equilibrium equations.

3.2 THE MOTION

Figure 3.1 shows the general motion of a deformable body. The body is imagined
as being an assemblage of material particles that are labeled by the coordinates X,
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Time| Length | Area | Volume ; Density

0 s A v 2,

t S a v

X, time = 0

FIGURE 3.1 General motion of a deformable bedy.

with respect to Cartesian basis E ., at their initial positions at time ¢ = 0. Generally
the current positions of these particles are located, at time = r, by the coordinates
x with respect to an alternative Cartesian basis e;. In the remainder of this text the
bases £ and ¢; will be taken to be coincident. However the notaticnal distinction
between E; and e; will be retained in order to identfy the association of quantities
with initial or current configurations. The motion can be mathematically described
by a mapping ¢ between initial and current particle positions as,

= (X 1) (3.1)

For a fixed value of ¢ the above equations represent a mapping between the unde-
formed and deformed bodies. Additionally. for a fixed particle X, Equation (3.1)
describes the motion or trajectory of this particle as a function of time. In finite
deformation analysis no assumptions are made regarding the magnitude of the dis-
placement x — X, indeed the displacement may well be of the order or even exceed
the initia} dimensions of the body as is the case, for example, in metal forming.
In infinitesimal deformation analysis the displacement x — X is assumed to be
small in comparison with the dimensions of the body, and geometrical changes are
ignored. )
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- 3.2 MATERIAL AND SPATIAL DESCRIPTIONS

In finite deformation analysis a careful distinction has to be made between the
coordinate systems that can be chosen to describe the behavior of the body whose
motion is under consideration. Roughly speaking, relevant quantities, such as den-
sity, can be described in terms of where the body was before deformation or where
it is during deformation; the former is called a material description, and the latter is
called a spatial description. Alternatively these are often referred to as Lagrangian
and Eulerian descriptions respectively. A material description refers to the behav-
jor of a material particle, whereas a spatial description refers to the behaviour at a
spatial position. Nevertheless irrespective of the description eventually employed.
the governing equatons must obviously refer to where the body is and hence must
primarily be formulated using a spatial description.

Fluid mechanicians almost exclusively work in terms of a spatial description
because it is not appropriate to describe the behavior of a marterial particle in. for
example, a steady-state flow situation. Solid mechanicians, on the other hand, will
generally at some stage of a formulation have to consider the constitutive behavior
of the material particie, which will involve a material description. In many instances
— for example, polymer flow — where the behavior of the flowing material may be
time-~dependent, these distinctions are less obvious.

In order to understand the difference between a material and spatial description,
consider a simple scalar quantity such as the material density o:

(a) Material description: the variation of p over the body is described with respect
to the original (or initial) coordinate X used to label a material particle in the
continuum at time ¢t = 0 as,

p=p(X,1) (3.2a)

(b) Sparial description: p is described with respect to the position in space, x,
currently occupied by a material particle in the continuum at time f as,

o= plx. 0 (3.2b)

In Equation (3.2a) a change in time ¢ implies that the same material particle
X has 2 different density p. Consequently interest is focused on the material
particle X. In Equation (3.2b), however, a change in the time ¢ implies that
a different density is observed at the same spatial position x. now probably
occupied by & different particle. Consequently interest is focused on 2 spatial
position x.
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EXAMPLE 3.1: Uniaxial motion

This example illustrates the difference betwesn a material and a spatial description
of motion. Consider the mapping x = (1 + )X defining the motion of a rod of initial
length two units. The rod experiences a temperature distribution given by the material
description T = Xr* or by the spatial description T’ = xt2/(1 + 1), see diagram
below.

t (X=1T=9 o (X =2T=18
. : —

X=1T=4  (X=2T=18)
: —

X=1T=1) (X=2T=2)
! —
1

The diagram makes it ¢lear that the particle reaterial coordinates (label} X remains
associated with the particle while its spatial posit:on x changes. The temperamure at a
given time caz be found in two ways, for example, at time # = 3 the temperature of the
particlelabeled X = 2is T =2 x 32 = 18. Alternatively the temperature of the same
particle which at £ = 3 is at the spatial position x =8is T =& x /(1 +3) =18
Note that whatever the fime it makes no sense to enguire about particles for whick .
X > 2, nor, for example, at time t = 3 does it make sense (o enquire about the

temperature at x > 8,

Often it is necessary to transform between the material and spatial descriptions
for relevant quantities, For instance, given a scalar quantity, suck as the density,
a material description can be easily obtained from a spatial description by using
motion Equation (3.1) as,

o(X. 1) = p(@(X, 1).1) (3.2¢)

Certain magnitudes, irrespective of whether they are materiaily or spatially des-
cribed. are naturally associated with the current or initial configurations of the body.
For instance the inital density of the body is a material magnitude, whereas the
current density is intrinsically a spatial quantity. Wevertheless, Equations (3.2a—)
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Xq. X5

X%

time =0

FIGURE 3.2 General motion in the neighborhood of a particie.

clewly show that spatial quantities can, if desired, be expressed in terms of the
initial coordinates.

3.4 DEFORMATION GRADIENT

A key quantity in finite deformation analysis is the deformation gradient F, which
is involved in all equations relating quantities before deformation to corresponding
quantities after (or during) deformation. The deformation gradient tensor enables
the relative spatial position of two neighboring particles after deformation to be de-
§cﬁbed in terms of their relative material position before deformation: consequently,
it is central to the description of deformation and hence strain.

Consider two material particles @) and Q5 in the neighborhood of a material
particle P: see Figure 3.2, The positions of (0 and Q; relative to P are given by
the elemental vectors X1 and dX» as,

X =Xp, — Xp; di:=Xp, — Xp (3.3a.b)

After deformation the material particles P, 1, and Q3 have deformed to current
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spatial pesitions given by the mapping (3.1) as, _
(3.4a,b,c)

xp = O(Xp, 1) Xy =d(Xp th g = (X, 1)
and the corresponding elemental vectors become,

dx; =Xg —xp = O(Xp +dXy1, 1) — ¢(Xp, 1) {3.52)

dx; =x4 — %, = HXp +dX2,1) — ¢Xp, 1) (3.5b)
Defining the deformation gradient rensor F as,

= %ii = Vo (3.6)

then the elemental vectors dx, and dx- can be obtained in terms of X and 47 as,

dx| = FdX; dx. = FdX» (3.7a,b)

Note that F transforms vectors in the initial or reference configuration into vectors
in the current configuration and is therefore said to be a rwo-point tensor.

Remark 1:  Inmany textbooks the motion is expressed as,
x=x(X,t) (3.8)

which allows the deformation gradient tensor to be written, perhaps, in a clearer
[manmer as.
8x
F=_— 3.9a
3% (3.92)
In indicial notation the deformation gradient tensor is expressed as,

Bx,- .

=9 =123 3.9h
3X; ! (3.95)

3
F= Zﬂf@@ﬁ'ﬁ Fir
iT=1
where lowercase indices refer to current (spatial) Cartesian coordinates, whereas
uppercase indices refer to initial (material) Cartesian coordinates.
Confining attention to a single elemental material vector X, the corresponding

vector dx in the spatial configuration is conveniently written as,

dx = Fd¥ 3.10
The inverse of F is,
)4
Fl=ZZ =gt 3.11
ax ¢ ( a)
which in indicial notation is,
28X
Fl= —E ; 3.11b
Z o L De ( )

{i=1
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Remark 2; Much research literature expresses the relationship between quanti-
ties in the material and spatial configurations in terms of the general concepts of
push forward and pull back. For example, the elemental spatial vector dx can be
considered as the push forward equivalent of the material vector dX, This can be
expressed in terms of the operation,

dx = ¢.[dX] = FdX : (3.12)

Inversely, the material vector X is the puil back equivalent of the spatial vector
dx. which is expressed as*,

dX = ¢, [dx] = Fldx (3.13)

Observe that in (3.12) the nomenclature ¢.[ }‘ implies an operation that will be
evaluated in different ways for different operands [ ].

EXAMPLE 3.2: Uniform deformation

This example illustrates the role of the deformation gradient tensor F. Consider the
uniform deformation given by the mapping,

1
X = Z(IS +4X; +6X2)

1
7y = (144 6X2)

which, for a square of side two units initially centred at X' = (0, 0}, produces the
deformation show below.

(55)4(E) (7,5

Xg X2
=
¢ e =¢,(Ep)
(2,2) (4.2)
-LDE| D '
1
¢ (ez)w*\ E; Xy x
& e
-L1) (LD

(continued)

* In the literature ¢, [ and 7' [ ] are often written, as ¢, and ¢* respectively.
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EXAMPLE 3.2 (cont.)

3 8

F_[a"fr F%:|_l[2 3]. F_I_l{s —3]

Tlaw 2w |TZlo 3] T30 2
X FES)

Unit vectors K, and E» in the initial configuration deform to,

omser (][] sms-rlf-[1]

and unit vectors in the current (deformed) configuration deform from.,

wor=r ][} e []-[7]

3.5 STRAIN

As a general measure of deformation, consider the change in the scalar product of
the two elemental vectors 4 X and 4 X2 shown in Figure 3.2 as they deform to dx)
and dx». This change will involve both the stretching (that is, change in length)
and changes in the enclosed angle between the two vectors, Recalling (3.7), the
spatial scalar product dx| - dx2 can be found in terms of the material vectors d.X

and 4X; as,

dxy-dxy =dX-CdXz (3.14)
where C is the right Cauchy—Green deformation tensor, which is given in terms of
the deformation gradient as F as,

C=F'F (3.15)

Note that in (3.15) the tensor  operates on the material vectors dX) and d X» and
consequently C is called a material tensor quantity.

Alternatively the initial material scalar product X - 4 X can be obtained in
terms of the spatial vectors dx; and dxs via the lefr Cauchy—Green or Finger

tensor b as,*

dX,-dX» =dx, -5 dxn (3.16)
where b is,
b=FFT 3.17

" InC = FTF, Fisonthernghtand ind = FFT, F is on the left.
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Observe thatin (3.16) 5" operates on the spatial vectors dx; and dxs, and conse-
quently &7, or indeed b itself, is a spatial tensor quantity.

The change in scalar product can now be found in terms of the material vectors -
dX. and d X> and the Lagrangian or Green strain tensor E as,

1
g(dxl -dxy; —dX,-dXs)=dX, - EdX> (3.184a)
where the material tensor E is,
1
E = :,_:(C -0 (3.18b)

Alternatively, the same change in scalar product can be expressed with reference
to the spatial elemental vectors dx; and dxz and the Eulerian or Almansi strain
tensor e as, .

1
3(dx1 cdxy —dX-dX2) = dx,-edx- (3.19a)
where the spatial tensor ¢ is,

1
2 = E(I 57N (3.19b)

EXAMPLE 3.3: Green and Almansi strain tensors

For the deformation given in Example 3.2 the right and left Cauchy-Green deforma-
tion tensors are respectively,

CmFTlel:l 3] b—FFT—l[“ 9]
' - T4

2.3 9 g 9
from which the Green’s strain tensor is simply.
1{0 3
E=3 [3 7]

and the Almansi strain tensor is,

e__l_o 9
T8[9 —4

The physical interpretation of these strain measures will be demonstrated in the next
example.

Remark 3:  The general nature of the scalar product as a measure of deformation
can be clarified by taking 4X> and 4X, equal to dX and consequently dx; =
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X%y

time =0

FIGURE 3.3 Change in length.

dxs = dx. This enables initial {material} and current {spatial) elemental lengths
squared to be determined as (see Figure 3.3),

dS* =dX-dX:  ds®=dx-dx (3.202.8)

The change in the squared lengths that occurs as the body deforms from the 1mt1al
1o the current configuration can now be written in terms of the elemental material

vector d X as,
%{a’sz —d§h =dX-EdX (3.21)

which, upon division by d $%, gives the scalar Green's strain as.
__F_dsz —ds? = dx E ax (3.22)
2d8* ds ds
where d X /dS is a unit material vector N in the direction of d X, hence, finally,
2 2 L] -
l M =N-EN (3.23)
2 ds*

Using Equation (3.19a} a similar expression involving the Almansi strain tensor
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can be derived as,
1/ds?—ds?
5:(“—dsz ) - (3.24)

where # is a unit vector in the direction of dx.

EXAMPLE 3.4: Physical interpretation of strain tensors

Refering to Example 3.2 the magnitude of the elemental vector dixg is dsp = 4.512,
Using (3.23) the scalar value of Green's strain associated with the elemental material
vector dX; is,

_Ifds®—dS$®N 7

co=\"a% )=1

Again using (3.23) and Example 3.3 the same strain can be determined from Green’s
strain tensor E as,

ifo 510 7
= NT = - = -
EG—NE'N—[C)'l]t€-|:3 7”:1] 4

Using (3.24) the scalar value of the Almansi strain asscciated with the elemental
spatial vector dxa is,

ool ds? —dS*\ 7
AT\ 45t BT

Alternatively, zgain using (3.24) and Example 3.3 the same strain is determined from
the Almansi strain tensor ¢ as,

1
1 1217]0 9 A 7
T . V2|
= en*[ﬁ’\/ﬁLS [9 —4}{;};]“18

Remark 4: In terms of the language of pull back and push forward, the material
and spatial strain measures can be related through the operator ¢,. Precisely how
this operator works in this case can be discovered by recognizing. because of their
definitions, the equality,

dx|-edxs=dX;-EdXs {3.25)

for any corresponding pairs of elemental vectors. Recalling Equations (3.12-13)
enables the push forward and pull back operations to be written as,

Push forward

e=¢(El=F TEF! (3.263)
Pull back

E=¢7 el=FTeF (3.26b)
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CHAPTER FOUR

STRESS AND EQUILIBRIUM

4.1 INTRODUCTION

This chapter will introduce the stress and equilibrium concepts for 2 deformable
body undergoing a finite motion. Stress is first defined in the current configuration
in the standard way as force per unit area. This leads to the well-known Cauchy
stress tensor as used in linear analysis. We will then derive the differential equations

enforcing translational and rotational equilibrium and the equivalent principle of -

virtual work.

In contrast to linear small displacement analysis, stress gquantities that refer
back to the initial body configuration can also be defined, This will be achieved
using work conjugacy concepts that will lead to the Piola~Kirchhoff stress tensors
and alternative equilibrium eguations. Finally, the objectivity of several stress rate
tensors is considered.

4.2 CAUCHY STRESS TENSOR

4.2.1 Definition

Consider a general deformable body at its current position as shown in Figure 4.1.
In order to develop the concept of stress it is necessary to study the action of the
forces applied by one region R of the body on the remaining part R; of the body
with which it is in contact. For this purpose consider the element of area Aa to
rormal 7 in the neighborhood of spatial point p shown in Figure 4.1. If the resultant
force on this area is A p, the traction vector ¢ corresponding to the normal r at p is

96
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3

FIGURE 4.1 Traction vecter.

defined as,
Ap
tm)= Hm —— (4.1)
(n) Aa—0 Aa
where the relationship between ¢ and r must be such that satisfies Newton’s third

law of action and reaction, which is expressed as (see Figure 4.1),
tH—n) = —t(n) (4.2)

To develop the idea of 2 stress tensor, Jet the three traction vectors associated
with the three Cartesian directions &1, €3, and 3 be expressed in a component form
as (see Figure 4.2),

t{e)) = o11e; + one2 + o183 {4.32)
t{ez) = op€; + omea + o3 (4.3b)
t{es) = o13€1 + o33€3 + 03363 (4.3¢)

Although the general equilibrium of a deformable body will be discussed in
detail in the next section, a relationship between the traction vector ¢ corresponding
to a general direction z and the components o;; can be obtained only by studying the
translational equilibrium of the elemental tetrahedzon shown in Figure 4.3. Letling
F be the force per unit volume acting on the body at peiat p (which in general
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FIGURE 4.2 Stress components.

e
’ t{m)

t{—e,)

dag =

FIGURE 4.3 Elemental tetrahedron.
could also include inertiz terms), the equilibrium of the tetrahedron is given as,

3
twyda+y t(~e)da;+ fdv=0 44
i=1
where da; = (% - ;) da is the projection of the area da onto the plane orthogonal
to the Cartesian direction i (see Figure 4.3) and dv is the volume of the tetrahe-
dron. Dividing Equation {4.4) by da, recalling Newton’s third law, using Equations
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(4.3a-c}, and noting that dv/da — 0 gives,

2 da; dv
tmy =~ j;‘zc—ej) — 4

3
=) te)in e
j=1

3
= Z ‘Jij(ej - n)e,' (4-5)

Lj=1
Observing that (¢ - #)e; can be rewritien in terms of the tensor productas (¢; & ;)1

gives,

Hn) = Z o {e; - n)e;

ij=1

3
= Z oiile; Qepn

ij=1

3
|: Z cr,-j(ei ®€j)}ﬂ (46)

i j=1

]

which clearly identifies a tensor o, known as the Cauchy stress tensor, that relates
the normal vector » to the traction vector ¢ as,

3
tn) =on; o= Z gje®e; (#.7a,b)

i j=1

EXAMPLE 4.1: Rectangutar block under self-weight {i)

Ko Xa
BN PO .

i

A simple example of a two-dimensional
stress tensor results from the self-weight
T of a block of uniform initial density
H ! : Py Testing on a frictionless surface as

rdode A shown in the figure above. For simplic-

ity we will assume that there is no lai-
eral deformation (in linear elasticity this
would imply that the Poisson ratic w==0}.

bt Xl Xy

(continued)
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EXAMPLE 4.3 (cont.)

Using Definition (4.1}, the traction vector £ associated with the unit vertical vector
e at an arbitrary point at height xz, initially at height X5, is equal to the weight of
material above an infinitesimal section divided by the area of this section. This gives,

(- f: og dxx) exdxy

dxy
where g is the acceleration of gravity and 4 is the height of the block after deformation.
The mass conservation Equation (3.57) implies that pdx;dx; = Pod X14X,, which
in conjuncricn with the lack of lateral deformation gives,

tey) =

tea) = pog(H — Xa) ez
Combining this equation with the fact that the stress components oy and o are
defined in Equation (4.3) by the expression t{ez) = o12¢1 + o€z gives g = Oand
oy = —pog(H — X2). Using a similar process and given the absence of horizontal
forces. it is easy to show that the traction vector associated with the horizontal unit
vectoris zero and consequently o, = oz = 0. The complete stress tensor in Cartesian
compenents is therefore,

Hw[o 0 }
TiE o pogXa— H)

The Cauchy stress tensor can alternatively be expressed n terms of its principal
directions my, ma, 3 and principal stresses o, for o = 1,2,3 as,

3
&= Z T Pl B Mg (4.8

el

where from Equations (2.57a—b), the eigenvectors my and eigenvalues oy satisfy.

Gy = OggMMy (4.9)
In the next chapter we shail show that for isotropic materials the principal directions
., of the Cauchy stress coincide with the principal Eulerian triad n, introduced in
the previous chapter.

Note that o is a spatial tensor; equivalent material stress measures associated
with the initial configuration of the body will be discussed later. Note also that the
well-known symmetry of o has not yet been established. In fact this results from
the rotational equilibrium equation, which is discussed in the following section.
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FIGURE 4.4 Superimposed rigid body motion.

4.2.2 Stress Objectivity

Because the Cauchy stress tensor is a key feature of any equilibrium or material
equation, it is important to inquire whether & is objective as defined in Section 3.13.
For this purpose consider the transformations of the normal and traction vectors
implied by the superimposed rigid body motion @ shown in Figure 4.4 as,

i) = Qt(n) (4.10a)
i=0n (4.106)

Using the relationship between the traction vector and stress tensor given by Equa-
tion (4.72) in conjunction with the above equation gives,

=000 (4.11)

The rotation of & given by the above equaton conforms with the definition of
objectivity given by Equation (3.135), and hence & is objective and 2 valid candidate
for inclusion in a material description. It will be shown later that the material rate
of change of stress is not an cbjective tensor.

4.2 ECQUILIBRIUM

4.3.1 Translational Equilibrium

Ir: order to derive the differential static equilibsium equations, censider the spatial
configuration of & general deformable body defined by a volume v with boundary
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X3, %4 ¢
n
¢
dv

f

time =

X% th

252

time=0

FIGURE 45 Equilibrium.

area v as shown in Figure 4.5. We can assume that the body is under the action
of body forces f per unit volume and traction forces ¢ per urit area acting on the
boundary. For simplicity, however, inertia forces will be ignored, and therefore
translational equilibrium implies that the sum of all forces acting on the body
vanishes. This gives,

] tda+[fdv=0 (4.12)
Ju v

Using Equation (4.7a) for the raction vecter enables Equation (4.12) to be
expressed in terms of the Cauchy stresses as,

fanda—&-[fdv:() (4.13)
Ju u

The first term in this equation can be transformed into a volume integral by using
the Gauss theorem given in Equation (2.139) to give,

f divo+ Fdv =0 (4.14)

where the vector div & is defined in Section 2.4.1. The fact that the above equation
can be equally applied to any enclosed region of the body implies that the integrand
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function must vanish, that is,
dive+f=0 (4.13)

This equation is known as the lecal (that is, pointwise) spatial equilibrium equation
for a deformable body. In anticipation of situations during a solution procedure
in which equilibrium is not yet satisfied, the above equation defines the pointwise
out-of-balance or residual force per unit volume r as,

r=dive+ f {4.16)

EXAMPLE 4.2: Rectangular block under self-weight (ii)

It is easy to show that the stress tensor given in Example 4.1 satisfies the equilibrium
equation. For this purpose. nete first that in this particular case the forces f per unit
volume are f = —pges, or in component form,

L= [—?’3]

Additionally, using Definition (2.134), the two-dimensional components of the diver-
gence of o are,
2 far1z
{diV a ] = B_Z‘]f- + —agxl; = de
Tl el

which combined with the mass conservation equation pdxidxs = ppdX1d Xz and
the lack of lateral deformation implies that Equation (4.14) is satisfied.

4.3.2 Rotational Equilibrium

Thus far the well-known symmetry of the Cauchy stresses has not been established.
This is achieved by considering the rotational equilibrium of a general body, again
under the action of traction and bedy forces. This implies that the total moment of
body and traction forces about any rbitrary potnt, such as the origin, must vanish,
that is, g

fxxtda+[x><fdv=0 4.17)
dv v

where it should be recalled that the cross product of a force with a position vector
x yields the moment of that force about the origin. Equation (4.72) for the trac-
tion vector in terms of the Cauchy stress tensor enables the above equation to be
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rewritten as,
fxx(an)da+[xxfdv=0 4.18)
du v
Using the Gauss theorem and after some algebra, the equation becomes™
fxx(diva'}dv+f£:aTdv-i-/xxfdv:O (4.19)
v v v

where £ is the third-order alternating tensor, defined in Section 2.2.4 (&, = 1 if
the permutation {i, 7, k} is even, -1 if itis odd, and zero if any indices are repeated.),
so that the vector £ : o7 s,

32 — 023
E:07 =] a3 —o3 4.20)
J2] — 012

Rearranging terms in Equation (4.19) to take into account the translational equilib-
rium Eguation (4.15) and noting that the resulting eguation is valid for any enclosed
region of the body gives,

E:07 =0 (4.21)

which, in view of Equation (4.20), clearly implies the symmetry of the Cauchy
stress tensor o

4.4 PRINCIPLE OF VIRTUAL WORK

Generally. the finite element formulation is established in terms of a weak form
of the differential squations under consideration. In the context of solid mechanics
this implies the use of the virtual work equation. For this purpose, let 8v denote
an arbitrary virtual velocity from the current position of the body as shown in
Figure 4.6. The virtual work. §uw, per unit volume and time done by the residual
force r during this virtual motion is# - 8v, and equilibsivm implies,

dw=r. =0 (4.22)

* Ty show this it is convenient to use indicial noftion and the summartion convention whereby repeated indices
imply addition. Equation (2.136) then gives.

]
Eippxjogrda = | —(Epxon)dv
fau% Tl fuﬁ—tr( ik X )

dayi
= f &jk.\'j'*é‘“— + Eijka'kjd”
v Rl ¥

= f(xxdiva-),‘a'vﬁ-f(f:a-"");dv
v y
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X3, %3

Su \\

Xl.xl

time =0

FIGURE 4.8 Principie of virtual work.

Note that the above scalar equation is fully equivalent to the vector equationr = 6.
This is due to the fact that §v is arbitrary, and hence by choosing dv = [1. 0, 01%.
followed by &v = [0,1,0]7 and év = [0,0, 1], the three components of the
equation r == 0 are retrieved. We can now use Equation (4.16) for the residual
vector and integrate over the volume of the body to give a weak statement of the
static eguilibrium of the body as,

8W=f(divcr+f) Cfrdu=0 (4.23)

A more common and useful expression can be derived by recalling Property (2.135¢)
to give the divergence of the vector oév us,

div(gév) = (dive} - v + o : Vv (4.24)

Using this equation together with the Gauss theorem enables Equation (4.23) to be
rewritten as,

J[n.o'SVda—fc:V(Svdv—E—ff-Svdv:O {4.25)
dv v v

The gradient of §v is, by definition, the virtual velocity gradient 81. Additionally.
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we can use Equation (4.7a) for the traction vector and the symmetry of & to rewrite
7+ by as 8y - ¢, and consequently Equation (4.24) becomes,

[cr:Sla’v:ff-(Svdv+fto8vda (4.26)
v u g

Finaily, expressing the virtual velocity gradient in terms of the symmetric virtual
rate of deformation &4 and the antisymmetric virtual spin tensor §w and taking into
account again the symmetry of o gives the sparial virtual work equation as,

5W=fcr:5da’v—-[f-6vdv—ft'8vda=0 4.2
v v gv

This fundamental scalar equation states the equilibrium of a deformable body and
will become the basis for the finite element discretization.

4.5 WORK CONJUGACY AND ALTERNATIVE STRESS
REPRESENTATIONS

4.5.1 The Kirchhoff Stress Tensor

Tn Equation (4.27) the internal virtual work done by the stresses is expressed as,
Wi = fo’ 1 8d dv (4.28)
u

Pairs such as o and 4 in this equation are said to be work conjugate with respect
to the current deformed volume in the sense that their product gives work per unit
cument volume. Expressing the virtual work equation in the material coordinate
system, alternative work conjugate pairs of stresses and strain rates will emerge.
To achieve this objective. the spatial virtual work Equation (4.27) is first expressed
with respect to the initial volume and area by transforming the integrals using
Equation (3.56) for dv to give,

ffa‘:éddV:ffo-é‘vdV-i—f £y - SvdA (4.29)
v v av

where fo = Jf is the body force per unit undeformed volume and £ = ¢(da JdA)
is the traction vector per unit initial area, where the area ratic can be obtained after
some algebra from Equation (3.68) as,

da J

dA~ Jn-bn

The intermal virmal work given by the left-hand side of Equation (4.29) can be
expressed in terms of the Kirchhoff stress tensor T as,

4.30)

5Wim=f T:8ddV, T=J& (4.31a,b)
v
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This equaticn reveals that the Kirchhoff stress tensor 7 is work conjugate to the
rate of deformation tensor with respect to the initial velume. Note that the work
per unit current volume is not equal to the work per unit initial volume. However,
Equation (4.31b) and the relazionship g = pg/J ensure that the work per unit mass
is invarfant and can be equally written in the current or initial configuration as:

lg:r rd = —1-1- 1 d (4.32)
P 20
4.5.2 The First Piola—Kirchhoff Stress Tensor

The crude transformation that resulted in the internal virtual work given above is
not entirely satisfactory because it still relies on the spatial quantities 7 and 4.
To alleviate this lack of consistency, note that the symmetry of o together with
Equation (3.93) for ! in terms of F and the properties of the trace give,

SWim=f Jo:8ldV
v
=[ Jo : SFFH)dv
v
mfu(m-io—aﬁ)dv
v

= f (JoFTy:5FdV (4.33)
v

We observe from this equality that the stress tensor work conjugate to the rate of the
deformation gradient ¥ is the so-called first Piola—Kirchhoff stress tensor given as.

P=JoF T - (4.34a)

Note that like F, the first Piola-Kirchhoff tensor is an unsymmetric two-point tensor
with components given as.

3 3
P=Y Pie®E;  Pi=) Jo(F Yy (4.34b.c)
ir=1 J=1 '

We can now rewrite the equation for the principle of virtual work in terms of the
first Piola—Kirchhoff tensor as,

fP:ﬁFdV:[fD.avdv+f to-SvdA (4.35)
Vv v v

Additionally. if the procedure employed to obtain the virtual work Equation (4.27)
from the spatial differential equilibrium Equation (4.24) is reversed, an equivalent
version of the differential equilibrium equation is obtained in terms of the first
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Piola—Kirchhoff stress tensor as,
ro=Jr=DIVP -+ fu=0 {4.36)

where DIV P is the divergence of P with respect to the initial coordinate system
given as,

DIVP=WP: I Vo P = %; 4.37)

Remark 1: It is instructive to re-exarmine the physical meaning of the Cauchy
stresses and thence the first Piola—Kirchhoff stress tensor. An element of force dp
acting on an element of areada = n da in the spatial configuration can be written as.

dp = tda = oda (4.38)

Broadly speaking, the Cauchy stresses give the current force per unit deformed area,
which is the familiar description of stress. Using Equation (3.68) for the spatial area
vector, dp can be rewritten in terms of the undeformed area corresponding o da
to give an expression involving the first Piola-Kirchhoff stresses as,

dp=JoF TdA = PdA (4.39)

This equation reveals that P, like F, is a two-point tensor that relates an area vector
in the initial configuration to the corresponding force vector in the current configu-
ration as shown in Figure 4.7. Consequently, the first Piola—Kirchheff stresses can
be loosely interpreted as the current force per unit of undeformed area.

EXAMPLE 4.3: Rectangular block under self-weight {iii}

Using the physical interpzetation for P given in Remark 1 we can find the first Piola—
Kirchhoff tensor corresponding to the state of stresses described in Exampie 4.1, For
this purpose note first that dividing Equation (4.39) by the current area element da
gives the traction vector associated with 2 unit normal N in the initial configuration as,

dA

da

Using this equation with N = Ej for the case described in Example 4.1 where the
lack of lateral deformation implies da = d4 gives,

tN) = PN

£(Ez) = PE>

=3 Pe®ENE:

Qfel

= Pre; + Pre;

{continued)
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X335

time =0 time =1

FIGURE 4.7 Interpretation of stress tensors.

EXAMPLE 4.2 (cont.)

Combining the final equation with the fact that #{E») = t(e2) = —pog(H — Xa)ez as
explained in Example 4.1, we can identify Pz = 0 and Pz = ppg(X2 — H). Using
a similar analysis for ¢(E ) eventually yields the components of P as,

0 0
£y = [0 pog(Xz - H)J

which for this particular example coincide with the components of the Cauchy stress
tensor. In order to show that the above tensor P satisfies the eguilibriurn Egua-
tion (4.37), we first need to evaluate the force vector f; per unit initial volume as,

dv
av
dv
= =086
= —pugez

f0=f

Combining this expression with the divergence of the above tensor P immediately
leads to the desired result.

4.5.3 The Second Piola~-Kirchhoff Stress Tensor

The first Piola-Kirchhoff tensor P is an unsymmetric two-point tensor and as such
is not completely related to the material configuration. It is possible to contrive
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a totally material symmetric stress tensor, known as the second Piola-Kirchhoff
stress S, by pulling back the spatial element of force dp from Equation (4.39) to
give a material force vector 47 as,

dP = o dpl = F~ldp (4.40)

Substituting from Equation (4.39} for dp gives the transformed force in terms of
the second Piola—Kirchhoff stress tensor 8 and the material element of area dA as,

dP = SdA; §S=JFlgF T (4.41a.h)

It is now necessary to derive the strain rate work conjugate to the second Piola-
Kirchhoff stress in the following manner. From Equation {3.100) it follows that the
material and spatial virtual rates of deformadon are related as,

8d = FT8EF! (£.42)

Substituting this relationship into the internal virtual work Equation (4.28) gives,

8Wm=[a':8ddu
v
2Jf Jo  (FTSEFHav
v
zf w(FlJeFTsEdv
1

= f S:3EdV (4.43)
v

which shows that § is work conjugate to £ and enables the material virtual work
equation 10 be alternatively written in terms of the second Piola—Kirchhoff tensor as,

fS:SEdV:[fO-BudV+f ty-8vdA (4.44)
v v av

For completeness the inverse of Equations (4.34a) and {4.41b) are given as,
o=J""PF",  o=JFSFT (4.45a,b)

Remark 2:  Applying the pull back and push forward conecepts to the Kirchhoff
and second Piola—Kirchhoff tensors yields,

S=F P T =g 7). T2 FSFT = ¢,[S] {4.45a,b)
from which the second Piola—Kirchhoff and the Cauchy stresses are related as,

§=Jo el o =J"p.S) (4.47ab)
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In the above equation S and o are related by the so-called Piola transformation
which involves a push forward or pull back operation combined with the volume
scaling J.

Remark 3; A useful interpretation of the second Piola—Kirchhoff stress can be
obtained by observing that in the case of rigid body motien the polar decomposition
given by Equation (3.27} indicates that F = Rand J == 1. Consequently. the second
Piola—Kirchhoff stress tensor becomes,

S=RToR (4.43)

. Comparing this equation with the transformation Equations (2.42) given in Section

the components of the Cauchy stress tensor expressed in the local set of orthogonal
axes that results from rotating the global Cartesian directions according to R.

EXAMPLE 4.4: Independence of S from @

A useful property of the second Piola—Kirchhoff tensor § is its independence from
possible superimpesed rotations £ on the current body configuration. To prove this,
note first that because ¢ = @ ¢, then F = QF and J = J. Using these equations in
conjunction with the objectivity of o as given by Equation {4.11) gives,

s a1 o T

§=JF'sF
IFQT Qe gF T

3
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EXAMPLE 4.5: Biot stress tensor

Alternative stress tensors work conjugate to other strain measures can. be contrived.
For instance the material stress tensor T work conjugate to the rate of the stretch tensor
[7 is associated with the name of Biot. In order to derive a relationship between T
and § note first that differentiating with respect to time the equations U = C and
2E = C — I gives,

E=iWwU+ vt
Witk the help of this relationship we can express the internal work per unit of initial
volume as,

§5:E=8:1UU+UU)
L (SUU + SUT)
= Hr(SUU + USU)
= LSU+US): U
and therefore the Biot tensor work conjugate to the stretch tensor is,
=SV +US)

Using the polar decomposition and the relationship between S and P, namely, P =
F8, an alternative equation for T’ emerges as,

T = {(R"P + P'R)

4.5.4 Deviatoric and Pressure Components

In many practical applications such as metal plasticity. soil mechanics, and biome-
chanics, it is physically relevant 1o isolate the hydrostatic pressure component p
from the deviatoric component o of the Cauchy stress tenser as,

o=a +pl: p= %’tro- = %-cr : I {4.49a.b)

where the deviatoric Cauchy stress tensor o” satisfies w o’ = 0.

Similar decompositions can be established in terms of the first and second
Picla—Kirchhoff stress tensors. For this purpose, we simply substitute the above
decomposition into Equations (4.34a) for P and (4.41b) for § to give,

P=pP +piF 7, P =J'F7 ~ (4.502)
§=8+pJiC7h §=JF g F T (4.50b)

The tensors & and P are often referred to as the true deviatoric components of
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S and P. Note that although the trace of ¢ is zero, it does not follow that the
traces of 8" and P’ maust also vanish, In fact. the comesponding equations can be
obtained from Equations (4.502—b) and Properties (2.28,49) of the trace and double
contractions as,

§:C=0 (4.51a)
P:F=0 (4.51b)

The above equations are important as they enable the hydrostatic pressure p to be
evaluated directly from either S or P as,

p=1I"'P:F (4.522)
p=131J7'5:C 452

Proof of the above equations follows rapidly by taking the double contractions of
(4.50a) by F and (4.50b) by C.

EXAMPLE 4.6: Proof of Equation {4.51a)

Equation (4.51a) is easily proved as follows:
§:C=JF'gFT):C
= Ju(F'e'F7C)
=Ju(e’FTFTFF™)
=Jwo
=0
A similar procedure can be used for (4.51b).

4.6 STRESS RATES

In Section 3.15 objective tensors were defined by imposing that under rigid body
moticns they transform according te Equation (3,135), Unfortanarely, time differ-
entiation of Eguation (4.11) shows that the material time derivative of the stress
tensor, ¢, fails to satisfy this condition as.

=060 + 00T + 0o’ (4.53)

Consequently. & # @& 07 unless the rigid bedy rotation is not a time-dependent
wransformation. Many rate-dependent materials, however, must be described in
terms of stress rates and the resulting censtitutive medels must be frame-indifferent.
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Exercises

1. A two-dimensional Cauchy stress tensor is given as,
oc=t@n +an n

where £ is an arbitrary vector and n; and n are orthogonal unit vectors. (a)

" Describe graphically the state of stzess. (b) Determine the value of « (hint: o
must be syrametric).

. Using Equation (4.55) and a process similar to that employed in Example 4.5,
show that, with respect to the initial volume, the stress tensor I is work conjugate
to the tensor H. where H = —F 7 and II = PC = Jo'F.

3. Using the time derivative of the eguality CC ~! = 7, show that the tensor
¥ = CSC = JFToF is work conjugate to %B, where B = —C ™}, Find
relationships between T, 3, and IL.

4. Prove Equation (4.51b) P’ : F = 0 using a procedure similar to Example 4.6.

5. Prove directly that the Jaumann stress tensor, &V is an objective tensor, vsing a
procedure similar to Example 4.7.

6. Prove that if dx; and dx» are two arbitrary elemental vectors moving with the
body (see Figure 3.2) then:

=2

d
E(dxl cordxn) =dxy - aCdxy

CHAPTER FIVE

HYPERELASTICITY

5.1 INTRODUCTION

The equilibrium equations derived in the previous section are written in terms of the
stresses inside the body. These stresses result from the deformation of the material,
and it is now necessary to express them in terms of some measure of this defor-
mation such as, for instance, the strain. These relationships, known as constitutive
equations, obviously depend on the type of material under consideration and may
be dependent on or independent of time. For example the classical small strain
linear elasticity equaticns involving Young medulus and Poisson ratio are time-
independent, whereas viscous fluids are clearly entirely dependent on strain rate.

Generally, constitutive equations must satisfy certain physical principles. For
exarnple, the equations must obviously be objective. that is, frame-invariant. In this
chapter the constitutive equations will be established in the context of a hypere-
lastic material. whereby stresses are derived from a stored elastic energy function.
Although there are & number of alternative material descriptions that could be in-
treduced, hyperelasticity is a particularly convenient constitutive equation given its
simplicity and that it constitutes the basis for more complex material models such
as elastoplasticity, viscoplasticity, and viscoelasticity.

5.2 HYPERELASTICITY

Materials for which the constitutive behavior is only a function of the current
state of deformation are generally known as elastic. Under such conditions, any
stress measure at & particle X is a function of the current deformation gradient F
associated with that particle. Instead of using any of the alternative strain measures
given in Chapter 3, the deformation gradient F, together with its conjugate first
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Pigla_Kirchhof stress measure P. will be retained in order to define the basic
material relationships. Consequently, elasticity can be generally expressec as,

P = P(F(X), X} (5.1

where the direct dependency upon X zllows for the possible ithomogeneity of the
material,

In the special case when the work done by the stresses during  deformation
process is dependent only on the initial state at time ty and the final configuration
at time ¢, the behavior of the material is said to be path-independent and the ma-
terial is termed hyperelastic. As a consequence of the path-independent behavior
and recalling from Equation (4.31) that P is work conjugate with the rate of defor-
mation gradient F, a stored strain energy function or elastic potential W per unit
undeformed volume can be established as the work done by the stresses from the
initial to the current position as,

Y{F(X), X) =[ P(F(X), X): Fdr; V=P:F (5.2a,b)

Presuming that from physical experiments it is possible to construct the function
W(F, X), which defines a given material, then the rate of change of the potential
can be alternatively expressed as,

b= o fs (53)

Comparing this with Equation (5.2b} reveals that the components of the two-point
tensor P are,

Y
Pij==—" 5.4
iJ 3F:, ( )
For notational convenience this expressien is rewritien in a more compact form as,
IV (F(X),
P(F(X). X) = _%ﬂ (5.5)

Equation {5.5) followed by Equation (3 2) is often used as a definition of a hyper- '

elastic material.

The general constitutive Equation (5.5) can be further developed by recalling
the restrictions imposed by objectivity as discussed in Section 3.13. To this end,
W must remain invariant when the current configuration undergoes a rigid body
rotation. This implies that I depends on ¥ only via the stretch component U and
is independent of the rotation component R. For convenlence, however, ¥ is often
expressed as a function of € = U* = FTF as,

W(F(X). X) = (T, X) (5.6)
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Observing that %C = F is work conjugate to the second Plola-Kirchhoff stress §,
enables a totally Lagrangian constitutive equation to be constructed in the same
manner 4§ Equation (5.5) to give,

W = :C=28:C; S(C(X),X):”E v

2C = IE (5.7a.b)

Sy
3] —

5.3 ELASTICITY TENSCR

5.3.1 The Material or Lagrangian Elasticity Tensor

The refationship between S and C or E = %(C — I, given by Equation (3.7b)
will invariably be nonlinear. Within the framework of a potential Newton—Raphson
solution process, this relationship will need to be linearized with respect to an
increment  in the current configuration. Using the chain rule, a linear relationship
between the directional derivative of § and the linearized strain DE[x] can be
cbtained, initially in a component form, as,

SirEgrle+ eul)

d
DS = —
£1[u] e

Exple + eul

€ lg=0

3
881,
= Z DEKL[u] (58)
KL
This relationship between the directional derivatives of § and E is more concisely
expressed as.
D8] =C : DE[u] (5.9)
where the symmetric fourth-order tensor C, known as the Lagrangian or marerial

elasticity tensor, is defined by the partial derivatives as,

C= Y CuxiE/QE;QEx®EL

3
FLK L=

Croer o= 98, _ 480
KL 3ExL | 8C1s3Cks

=Criis (5.10)
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For convenience these expressions are often abbreviated as,

oo B8 _,88 4w

2— = — 5.11
oE aCc  aCacC 6.0

EXAMPLE 5.1: St. Venant-Kirchhoff Material

The simplest example of a hyperelastic matertal is the St. Venant-Kirchhoff model,
which is defined by a strain energy function ¥ as,

W(E) = %x(trE)Z +uE:E

where  and p are material coefficients, Using the second part of Equation (5.7b}, we
can obtain the second Piola—Kirchhoff stress tensor as,

§ = i(r ) + 2uE

and using Bquation (5.10), the coefficients of the Lagrangian elasticity tensor emerge
as,

Crixy, = AMpslgr -+ 2u8rxdsr

Note that these two last equations are analogous to those used in linear elasticity,
where the small strain tensor has been replaced by the Green strain. Unfortunately.
this St. Venant-—Kirchhoff material has been found to be of little practical use beyond
the small strain regime.

5.3.2 The Spatial or Eulerian Elasticity Tensoer

Tt would now be pertinent to attempt to find a spatial equivalent to Equation (5.9), and
it would be tempting to suppose that this would involve a relationship between the
linearized Cauchy stress and the linearized Almansi strain. Although., in principle,
this can be achieved, the resulting expression is intractable. An easier route is to
interpret Equation (5.9) in a rate form and apply the push forward operation to the
resulting equation. This is achieved by linearizing § and £ in the direction of v,
rather than . Recalling from Section 3.9.3 that DS[v] = S and DE[v] = E gives,

§=C:E (3.12)

Because the push forward of § has been shown in Section 4.5 to be the Truesdell
zate of the Kirchhoff stress 7° = Jo° and the push forward of E is 4. namely,
Equation (3.91a), it is now possible to obtain the spatial equivalent of the material
linearized constitutive Equation (5.12) as,

o =cid (5.13)

where ¢, the Eulerian or spatial elasticity tensor. is defined as the Piola push

LAy
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forward of € and after some careful indicial manipuladons can be obtained as®,

Lk
1K L

3
e=i"lodCk o= Y IR FuFuFiCuxie®e; Qe Qe
=1
A 1

(5.14)

Often, Equation (5.13) is used, together with convenient coefficients id ¢, as the
fundamental constitutive equation that defines the material behavior. Use of such
an approach will, in general, not guarantee hyperelastic behavior, and therefore the
stresses cannot be obtained directly from an elastic potential. In such cases, the rate
equation has to be integrated in time. and this can cause substantial difficultes in a
finite element analysis because of problems associated with objectivity over a finite
time increment.

Remark 1: Using Equations (3.96) and (4.55), it can be observed that Equa-
tion (5.13) can be reinterpreted in terms of Lie derivatives as,

LalT] = Jor Lyle] (5.15)

5.4 ISOTROPIC HYPERELASTICITY

5.4.1 Material Description

The hyperelastic constitutive equations discussed so far are unrestricted in their
application. We are now going to restrict these equations to the common and im-
portant isotropic case. Isotropy is defined by requiring the constitutive behavior 1o
be identical in any material direction™. This implies that the relationship between
W and € must be independent of the material axes chosen and, consequently, ¥
must only be a function of the invariants of T as,

WC(X), X) = V(e e, e, X5 {5.16)

where the invariants of € are defined here as,

Ic=wC=C:1 ' (5.172)
He=uCC=C:C (5.17b)
I = detC = J* (5.17¢)

* Using the standard summation convention and noting from Equation (4.54) that a}? =J"VFy F 'y 7847 and from
Equation {3.91a) that £y, = Fux Firdy gives,

of) = 471G = I R Crike Fo Frodu = cajudy

and, consequently, e pw = J B By Fen FrCroxe
** Note that the resulting spatial behavior as given by the spatial clasticity tensor may be anisotropic.
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As a result of the isotropic reswiction, the second Piola—Kirchhoff stress tensor
can be rewritten from Equation (5.7b} as,
&-_-233%*-2 aw all¢ s 8w allic
aC ale 8C gl 8C pllle 8C
The second-order tensors formed by the derivatives of the first two invariants with
respect to C can be evaluated in compenent form to give,

(5.18)

§=2

4 }ic _sy ey (3.19a)
aC[_j & KK — Q1S 8C - -
I 817
= CxiCrr=2Crsi e =2C (5.19b)
aCiy Pl ac

The derivative of the third invariant is more conveniently evaluated using the expres-
sion for the linearization of the determinant of @ tensor giver in Equation (2.119).
To this end note that the directional derivative with respect to an arbitrary increment
tensor AC and the partial derivatives are related via,

3. 8l allle
HIe[AC] = ACy = —=: AC 5.20
DHI¢[AC] MZ=l 50, A0 =5 (5.20)
Rewriting Equation (2.119) as,
DHIcIAC] = detC (C™1 : AC) (5.21)

and comparing this equation with Expression (5.20) and noting that both equations
are valid for any increment AC yields,

(5.22)

Introducing Expressions (3.19a,b) and (5.22) into Equation (5.18) enables the sec-
ond Piola-Kirchhoff stress 10 be evaluated as,
§ =20, F + 40,0 + 274, ,C7! (5.23)

where W; = 3W/lc. Wy = 8W /0l ¢, and W,y = 8% /8.

B.4.2 Spatial Description

In design practice it is obviously the Cauchy stresses that are of engineering signif-
icance. These can be obtained indirectly from the second Piola—KirchholT stresses
by using Equation (4.45b) as,

o=J'FSFT (5.24)
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Substituting S from Equation (5.23) and neting that the left Cauchy-Green tensor
ish = FFT gives,

o = 27 b+ 47 TN B 2T Wy T (5.25)
In this equation ¥, Wy, and Wy still involve derivatives with respect to the

invariants of the material tensor €. Nevertheless it is easy to show that the invariants
of b are identical to the invariants of €, as the following expressions demonstrate,

I =tb]=ulFF | =wlFTFl=t[Cl=I (5.26a)
Iy =tibb] = [FF FF ) =u[F FFIF]=uw[CC]=1IIc  (5.26b)
i, = det[p] = det{FFT] = det[F7 F] = det[C] = Ilic (5.26¢)

Consequently, the terms Wy, Wy, and ¥y, in Equation (5.25) are also the derivatives
of W with respect to the invariants of b.

Remark 2: Note that any spatially based expression for W must be a function of
b oniy via its invariants, which implies an isotropic material. This follows from
the condition that W must remain constant under rigid body rotations and only the
invariants of &, not b itself, remain unchanged under such rotations.

EXAMPLE 5.2: Cauchy stresses

It is possible to derive an alternative equation for the Cauchy stresses directly from
the strain energy. For this purpose, note first that the time derivative of & is,

b=FFT +FF =Ib+BbI7

and therefore the internal energy rate per unit of undeformed volume wg = ¥ s,

‘I‘:E:b
vy

= — 1 IT
o (b +bI")

o
=2—b:
ob !

If we combine this equation with the fact that o is work conjugate to { with respect
to the current volume. that is, w = J Vg = & I, gives,

: o
Jo=2—b
T="%%
It is simple to show that this equation gives the same result as Equation (5.23) for

isotropic materials where W is a function of the invariants of b.
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5.4.3 Compressible Neo-Hookean Material

The equations derived in the previous sections refer to a general isotropic hyperelas-
tic material, We can now focus on a particularly simple case known as compressible
neo-Hookean material, This material exhibits characteristics that can be identified
with the familiar material parameters found in linear elastic analysis. The energy
function of such a material is defined as,

A
Y= %(lc —~3)=—plnJ + ;{ln Jy (53.27)

where the constants A and i« are materdal coefficients and J 2 = 7], Note that
in the absence of deformation, that is, when € = I, the stored energy function

vanishes as expected.
The second Piola—Kirchhoff stress tensor can now be obtained from Equa-

tion (5.23) as,
S=ull —CH+AlnN)C! (5.28)

Alternatively, the Cauchy stresses can be obtained using Equation (5.25) in terms
of the left Cauchy—Green tensor b as,

o= %(b —-D+ «Jjﬁ(m NI (5.29)

The Lagrangian elasticity tensor corresponding ro this neo-Hookean material
can be obtained by differentiation of Equation (5.28) with respect to the components
of € to give, after some algebra using Equation {5.22), C as,

C=2C'®C T +2( -2 ln T (5.30)

where € @C™ = SNCT N HC Nk Er R E; ® Ex @ Ey and the fourth-
order tensor Z is defined as,
ac! HC Ny
) T = 53.31

Yol TIKL 3Ce, (5.3
In order to obtain the coefficients of this tensor, recall from Section 2.3.4 that
the directional derivative of the inverse of a tensor in the direction of an arbitrary
increment AC s,

L=-

DCHAC] = ~C~lAC)C™! (5.32)

Alternatively, this directional derivative can be expressed in terms of the partial
derivatives as,

ETodt .

DCAC) = = AC (3.33)
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Consequently, the components of Z can be identified as,
Zrsxr = (€@ hye {5.34)

The Eulerian or spatial elasticity tensor can now be obtained by pushing forward
the Lagrangian tensor using Equation (3.14) to give, after tedious algebra, © as,

A 2 .
o=71®1+7(u—~klnj)u (5.35)

where U is the fourth-order identity tensor obtained by pushing forward 7 and in
component form is given in terms of the Kroneker delta as,
V=ouTl bigm= Y FuFuFFulike = s (5.36)
1KLL
Note that Equation (5.36) defines an isotropic fourth-order tensor as discussed
in Section 2.2.4, similar to that used in linear elasticity, which can be expressed in
terms of the effective Lamé moduli A’ and i’ as,

wijrr = N 88k + 2 88 (5.37
where the effective coefficients A" and u’ are,
A p—rnJ
A== (= 5.38
7 “ 7 (5.38)

Note that in the case of smal? strains when J & 1, then &' & A, o' = pu, and the
standard fourth-order tensor used in linear elastic analysis is recovered.

EXAMPLE 5.3: Pure dilatation {i}

The simplest possible deformation is a pure dilatation case where the deformation
gradient tensor F is,

F=i:  T=X
and the left Cauchy—Green tensor b is therefore,

b= = I

Under such conditions the Cauchy stress tensor for 2 compressible neo-Hookean
material is evaluated with the help of Equation (5.29) as,

B A
=| =M -+ =g I
o= L0+ Fmi]
which represents a state of hydrostatic stress with pressure p equal to,

e TE] LA
= - - e ri
P ](J 1)-:—J]n
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EXAMPLE 5.4: Simple shear (i)

The case of simple shear described in Chapter 3 is defined by a deformation gradient
and left Canchy—Green tensors as,

1 ¥y 0 1+ vy ©
F=1010|: &=| y 10
g 0 1 0 0 1

which imply J = 1 ard the Cauchy stresses for 2 neo-Hookean material are,

v? 0
o=uly 0
0 0

Note that only when y — 0 is a state of pure shear obtained. Note also that despite the
fact that J == 1, thatis, there is no change in velume, the pressure p == trg /3 = y2/3
is not zero. This is known as the Kelvin effect,

[ B T

5.5 INCOMPRESSIBLE AND NEARLY
INCOMPRESSIBLE MATERIALS

Most practical jarge strain processes take place under incompressible or near incom-
pressible conditions. Hence it is pertinent to discuss the constitutive implications
of this constraint on the deformation. The terminology “near incompressibility”
is used here to denote materials that are truly incompressible, but their numerical
treatment invokes & small measure of volumetric deformation. Alternatively. in a
large strain elastoplastic or inelastic context, the plastic deformatior is often truly
incompressible and the elastic volumetric strain is comparatively small.

5.5.1 Incompressibie Elasticity

In order to determine the constitutive eguation for an incompressible hyperelastic
material. recall Equation (3.7a) rearranged as:

1 ,
(55 - 55) =0 (5.39)
Previously the fact that € in this equation was arbitrary implied that § = 28¥/3C.
In the incompressible case, the term: in brackets is not guaranteed to vanish because
€ is no longer arbitrary. In fact, given that J = 1 throughout the deformation and
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Admissible € plane

FIGURE 5.1 Incompressibility constraint

therefore J = 0, Bquation (3.129) gives the required constraint on C as,
treT':€=0 (5.40)

The fact that Equation (5.39) has to be satisfied for any € that complies with
condition (5.40) implies that.

%S - % = ]%C“‘ (5.41)
where y is an unknown scalar that will, under certain circumstances that we will dis-
cuss later. coincide with the hydrostatic pressure and will be determined by using
the additional equation given by the incompressibility constraint / = 1. Equa-
tion {5.40) is symbolically illustrazed in Figure 5.1, where the double contraction
“: " has been interpreted as a generalized dot product. This enables (8/2—3W/3C)
and JC™1/2 1o be seen as being orthogonal to any admissible € and therefore pro-
porticnal to each other.

From Equation (5.41) the general incompressible hyperelastic constitutive
equation emerges 4s,

9w (C)
aC
The determinant J in the 2bove equation may seem unnecessary in the case of in-
compressibility where J = 1, but retaining J has the advantage that Equation (5.42)
is also applicable in the nearly incompressible case. Furthermore, in practical terms.
a finite element analysis rarely enforces J = 1 in a strict pointwise manner, and
hence its retention may be important for the evaluation of stresses.

§=2 +yJC! (5.42)
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Recalling Equation (4.50b) giving the dewatomc—hydrostauc decomposition of
the second Piola—Kirchhoff tensor as § = §' + pJC~!, it would be convenient
to identify the parameter v with the pressure p. With this in mind, a relationship
between p and y can be established to give,

p= %J'lS :C
= %J [7% +yJC™ ] c
—y43ri (5.43)
which clearly indicates that ¥ and p coincide only if.
2 iC=0 (5.44)

This implies that the function W(C) raust be homogeneous of order 0, that is,
Y(@C) = W(C) for any arbitrary constant «.* This can be achieved by recognizing
that for incompressible materials Iflc = detC = J? = 1, We can thersfore
express the energy function W in terms of the dIStDITlO[la.l component of the right
Cauchy—Green tensor & = i, 3¢ to give a formally modified ener, gy f function
lIl(C) = ¥(€). The homogeneous properties of the resulting function \I!(C) are
easily shown by,

T(aC) = U[(detal) 2 (al))
= U[(a? det €)~Pal]
= Y[(detC)~/3C]
=TwW) (5.45)

Accepting that for the case of incompressible materials ¥ can be repiaced by T,
Condition (5.44) is satisfied and Equation (5.42) becomes.

~C +pJc! (5.46)

It is now a trivial matter to identify the deviatoric component of the second Piola—

= A scalar function fix) of a k-dirensional vecter variable x == [x1, x2. ... x¢)7 is said to be homogeneous of
order n if for any arbitrary constant a,

Slaxy =o' fix)
Differentisting tis expression with respect to e at o = 1 gives,

Bf

e xom nf)

5.5 INCOMPREL JLE MATERIALS 129

Kirchhoff tensor by comparison of the above equation with Equation (4.50b) 1o give,

L]
§'=25 (5.47)

Note that the deriyative BQ(C)/BC is not equai to the derivative 3W(C)/4C,
despite the fact that € = C for incompressibility. This is because [Il¢ remains
a functon of C while the derivative of € is being executed. It is only after the
derivative has been completed that the substitution IIl¢ = 1 can be made.

5.5.2 Incompressible Neo-Hookean Material

In the case of incompressibility the neo-Hookean material introduced in Sec-
tion 5.4.3 is defined by a hyperelastic potential W (L) given as,

1
(C) = E/.L(l:rC -3 (5.48)

The equivalent homogeneous potential T is established by replacing C by Cw
give,

-~ 1 "
V(C) = Eu(u‘C —3) {5.49) .

Now using Equation (5.46) § is obtained with the help of Equations (5.19a) and
(5.20) as,

_“—(111‘”36 : D+ piC™!

= pliiz 1 = ta P e s D1+ prct

= Wl = 31cC 7Y 4+ pICT! (5.50)

The corresponding Cauchy stress tensor can now be obtained by using Equa-
tion (4.45b) to give o as,

o=J'FSFT
=uJ PRI = 1cCYFT 4 pFCTFT
=o' +pl; o =ulPl-LiLD) {5.51)

where the fact that [ = I¢ has been used again.
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We can now evaluate the Lagrangian elasticity tensor with the help of Equations
(5.10) or (5.11). The result can be split into deviatoric and pressure compenents, C
and Cp respectively, as,

o~ ~ 38 EV a(JCt
C=2——=C+Cp C=2—=4 3 Cp=2p(—8—c—)

(5.52)

With the help of Equations (5.22) and (5.3 1) these two components can be evaluated
for the neo-Hookean case defined by Equation (5.49) after lengthy but simple
algebra as,

& = 2ullZ M il - LI@C™ = LT @ T+ §1cCT ® €T (3.53)
¢, =plicT'@C™ 2T} (5.53b)

Note that the pressure component C, does not depend on the particular material

definition being used.
The spatial elasticity tensor is obtained by the push forward type of operation
shown in Equation (5.14) as, .

c=bde,  &=IT'GEE e =TT 0uC,] (5.54)
Performing this push forward operation in Equations (5.53a.b) gives,

S =ous P Ici— @1 - ®b+ iLID]] (5.552)

ep=plIQI—-21) (5.550)

EXAMPLE 5.5: Mooney-Riviin materials

A general form for the strain energy function of incompressible rubbers attributable
to Mooney and Rivlin is expressed as,

W)=Y prslle =3 Ul — 3

rsz0

where [T is the second invariant of € defined as,
Hy=34UF -y He=C:C

The most frequently used of this family of equations is obtained when only fo and
(10 &re different from zero. In this particular case we have,

W(C) = uiollc — 3) + pa (s — e —6) _
(continued)
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EXAMPLE 5.8 (cont.)

The equivalen: homegeneous potential is obtained by replacing C by € inthis equation
to give,

V(€)= o€ = 3) + Jpon [P = € : € ~ 6]

5.5.3 Nearly Incompressible Hyperelastic Materials

As explained at the beginning of Section 5.5 near incompressibility is often 2
device by which incompressibility can more readily be enforced within the context
of the finite element formulation. This is facilitated by adding a volumetric energy
component U (J) to the distortional component U already defined to give the total
strain energy function W(C’} as,

W(C) = W(C)+ UW) (5.56)
where the simplest example of a volumetric function U(J) is,
U =1 = 1) (5.57)

It will be seen in Chapter 6 that when equilibrium is expressed in a varational
framework, the use of Equation (5.57) with a large so-calied penalty number &
will approximately enforce incompressibility. Typically. values of ¥ in the region
of 10° — 10* 11 are used for this purpose. Nevertheless, we must emphasize that &
can represent a true material property, namely the bulk moduius, for a compressible
material that happens to have a hyperelastic strain energy function in the form given
by Equations (5.56) and {5.37).

The second Piola—Kirchhoff tensor for a material defined by {5.56) is obtained

" in the standard manner with the help of Equation (5.22) and noting that [llg = J 2

to give.
Y
=2—
$ ac
30 _dU 8J
=2-—+4+2——
] d7 8C
av
=2-—— +pJC~! 5.58
¢ TP (5.58)
where. by comparison with (3.46). we have identified the pressure as,
auv
p=— (5.59)
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which for the case where U(J) is given by Equation (3.57) gives,
p=kJ 1) (5.60)

This value of the pressure can be substituted into the general Equation (5.58) or
into the particular Equation (5.50) for the neo-Hookean case t0 yield the complets
second Piola—Kirchhoff tensor. Alternatively, in the nec-Hookean case, p can be
substituted into Equation (3.51) to give the Cauchy stress tensor,

EXAMPLE 5.6: Simple shear (ii)

Again we can study the case of simpie shear for a nearly incompressible nec-Hookean
material. Using Equation (5.51) and the b tensor given in Exercise 5.4 we obtain,

oy 0
o=pl v -3¢ 0
0 0 —iyt

where now the pressure is zero as J = 1 for this type of deformation. Note that for
 this type of material there is no Kelvin effect in the sense that a volume-preserving
motion leads to a purely deviatoric stress tensor.

EXAMPLE 5.7: Pure dilatation (ii}

It is also useful to examine the consequences of a pure dilatation on a nearly in-
compressible material. Recalling that this type of deformation has an associated left
Cauchy—Green tensor b = J*2I whose trace is I, = 3.J%7, Equations (5.51) and
(5.60; give,

o=x(J—DI

As expected a purely diletational deformation leads to a hydrostatic state of stresses.
Note also that the isochoric potential ¥ plays no role in the value of the pressure p.

Again, to complete the description of this type of material it is necessary to
derive the Lagrangian and spatial elasticity tensors. The Lagrangian tensor can be
split into three components given as.

o
v aJCc™!
+12p ¢ )
aCaC ac
The first two components in this expression are Cand C, as evaluated in the previous
section in Equations (5.53a.b). The final term., namely C,, represents a volumetric

_ gp
= 2 i .
C=4 L2JCT'® 3 (5.61)
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rangent component and foilows from U/(J) and Equation (5.22} as,

_ ap
Co=27C"1Q =
¢ ®aC

42U aJ
=27 “lg =
dﬂc ®ac
L d2U _
=J-dﬂc ! (3.62)

which in the case U (J) = x(J — 1)?/2 becomes,
Ce=xSCigct (5.63)

Finally, the spatial elasticity tensor is obtained by standard push forward oper-
ation to yield,

e=J"1¢,[C1=8 + ey + (3.64)

where the deviatoric and pressure components, & and ¢, respectively, are identical
to those derived in the previous section and the volumetric component ¢y, is,
_ dU
e = J 1[0 ] = JB—J—EI®I (5.63)

which for the particular function U(J) defined in Equation (5.57) gives,
ce =kJI®I (5.60)

Remark 3: At the initial configuration, F =C =b=1.J = 1, p = 0. and the
above clasticity tensor becomes,

G)

Crm G O
2pfi— IR +xI®1

(e — 3u)I @I+ 2pL , (5.67)

|

which coincides with the standard spatially isctropic elasticity tensor (3.37) with
the relationship between A and & given as,

A=k —Fu (5.68)
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In fact all isotropic hyperelastic materials have initial elasticity tensors as defined
by Equation (5.37).

5.6 ISOTROPIC ELASTICITY IN PRINCIPAL
DIRECTIONS

5.6.1 Material Description

Itis often the case that the constitutive equations of a material are presented in terms
of the stretches Ay, Ag, Aa in the principal directions N1, Nj, and N3 as defined
in Section 3.5. In the case of hyperelasticity, this assumes that the stored elastic
energy function is cbtainable in terms of A, rather than the invariants of €. This
is most likely to be the case in the experimental determination of the constitutive
para.metcrs.

In order to obtain the second Piola—Kirchhoff stress in terms of the principal
directions and stretches, recall Equation (5.23) and note that the identity, the right
Cauchy—Green tensor. and its inverse can be expresses as (see Equations (2.30)yand
(3.30)).

3
T=) Na®Na (5.692)
o=l
3
C=) M Na®Na (5.69h)
2
€7 =Y 27 Na® Na (5.69¢)
a=1

Substituting these equations into Equation (5.23) gives S as,

3
S= (W + 49} + 2V )Ne @ Ne (5.70)
I=1

Given that the term in brackets is 2 scalar it is immediately apparent that for an
isotropic material the principal axes of stress coincide with the principal axes of
strain. The terms Uy, Wy, and ¥;,; in Equation (5.70) refer to the derivatives
with respect to the invariants of €. Hence it is necessary to transform these intc
derivatives with respect to the stretches. For this purpose note that the squared
stretches A2 are the eigenvalues of C'. which according o the general relationships
(2.60a—c) are related to the invariants of € as,

Ie =2+ +A3 (5.712)
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He =2} +a5+23 (5.710)
Hlc = 233323 (5.71c)

Differentiating these equations gives,

= dle
@ {5.72a)
alle
20 = ——
" 12 (5.72b)
Ille . e
22 = BJLE (5.72¢)

which upon substitution into Equation (5.70) and using the chain rule gives the
principal components of the second Plola—Kirchhoff tensor as derivatives of W
with respect to the principal stretches as,

3
a
S = E Soa Na @ Ny Sea = ey {5.73)
=] 8)\.&

5.6.2 Spatia! Description

In order to obtain an equation analogous to (5.73) for the Cauchy stress, substitute
this equation into Bquation (4.43b) to give,

c=J'FSFT = 3 gﬁ(JFN Y® (FN,) 7
- fa)@ o o (5 ‘4)
a=1

o

Observing from Equaton (3.44a) that F N, = Ay#, yields the principal compo-
nents of Cauchy stress tensor after simple algebra as,

he O 1 8y
Oge = 7T = T
J Bhye J3lnA,

3
o= § Toe Mo G Ry’

a=1

(5.73)

The evaluation of the Cartesian components of the Cauchy stress can be easily
achieved by interpreting Egquation (5.75) in a matrix form using Equation {2.40d)
for the components of the tensor product to give,

3
[o] =Y Gualtalinal’ (5.76)

a=1

where [¢] denotes the matrix formed by the Cartesian components of o and [#,]
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are the column vectors containing the Cartesian components of n,. Alternatively,
a similar evaluation can be performed in an indicial manner by introducing Ty; as
the Cartesian components of #,. that is, ry = Z‘jﬂ Tyje;, ancd substituting into
Equation (5.75) to give,

3 .
Z (ZUaQTaJTQA)eJ X ey (577}

Jk=1

The expression in brackets in the above equation gives again the Cartesian compo-
nents of the Cauchy stress tensor.

5.6.3 Material Elasticity Tensor

To construct the material elasticity tensor for a material given in terms of the
principal stretches it is again témporarily convenient to consider the time derivative
Equation {5.12), that is, § = C : . From Equation (3.123) it transpires that £ can
be written in principal directions as,

1422 21 2
E= Z ANy ®@No+ ;] EWO,,B(A;—A;) No @ Ng (5.78)
o p=
o

where Wyg are the components of the spin tensor of the Lagrangian triad, that is,
Ny = Z§=l Wep Np. A similar expression for the time derivative of § can be
obtained by differentiating Equation (3.73) to give,

3 2 2 3
) 3~y da ay . .
S= 30 2o PN ®Na + ) 255 (N @ Na + Na @ No)
o

a=1

-y No® Ny + Z(S — SpeyWas Ny @ Ng (3.79)
80235 di Jo, e e e B
af
Now observe from Equation {5.78) that the on-diagonal and off-diagonal terms of
E are,

e ok, (5.802)
dr
2E
Wap = —"‘i (@ # B) (5.80b)
—*5

Substituting Equations (5.80a—b) into (5.79} and expressing the components of E
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as Eug = (No ® Ng) ¢ £ yields,

5 i«% O s (Na® N + i e =y N.@N
= BB o =7 .2 Taf &
YV LI g 22— 33

a

3 48ty
= > Ne@N.@Nz@Ng

o2 91280y
>\ Saa = Sgp <
+ qﬁNg@Nﬁ@N,;;@Nﬁ E (381)
=1 2
“arp

Comparing this expression with the rate equation § = C : £, the material or La-
grangian elasticity tensor emerges as,

3
p*y
C=Y 4— N, ON. Q@N; RNy

a;I 832845
2 Saw— S5

+ 3 2N, QN QN ® Ny (5.82)
o f=1 ’“c"z_}‘ﬁ
agi

Remark 4: In the particular case when by = A 5 isoropy imphies that Sye = Sgg,
and the quotient {Syy — Sﬁﬁ)/'(}k:; — A%) in Equation (5.82) must be evaluated using
L’Hospital’s rule to give,

-5 2z 2
lim 25"‘3’ L aqu— aqu (5.83
A BAz0a;  BAZ8AZ

5.8.4 Spatial Elasticity Tensor

The spatial elasticity tensor is obtained by pushing the Lagrangian tensor forward
to the current configuration using Equatien (5.14), which involves the product by
F four tdmes as,

i1 9w
o = Z 75 (FNR(FN,)@(FN)R(FNg)

ooy T aakan;
> 2 S Sﬂﬁ )
+ T2 o (FNaz) @ (FNg)® (FNa) ® (FNg) (5.84)
LB=1 o
P
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Noting again that FN, = At and after some algebraic manipulations using
the standard chain rule we can eventually derive the Eulerian or spatial elasticity
tensor as,

1 EEAV
ny ®@ng@ng — ) 20anlla @1y Q1 &N
NE J ainldalnlﬁna® «@rngdng 0?:1 e e D7y @ 1y @ N
3 Guuhd — Gaght
+Zz%na®”ﬂ®ﬂa®”ﬁ (5.85)
ad=1 o B
wott

The evaluation of the Cartesian components of this tensor requires a similar
transformation to that employed in Equation (5.77) for the Cauchy stresses, Using
the same notation, the Cartesian components of the Eulerian triad 7,; are substituted
into Equation (5.85) to give after simple algebra the Cartesian components of ¢ as.

301 R/

- jm%f To; ToeTor — Z 2000 Tori Torj Lok Tt

=1

i =

Tughs — & )r
e e i T T T (5.86)

Remark 5 Again, recalling Remark 4, in the case when A, = Ag. L'Hospital’s
rule yields,

2 )\. ) =
,)Urxalp Q',Bﬁ ]. -y o~ i|—20',3'3
dlnAgdlnig alnkaalnlﬁ

hp—rha A‘Q - A‘ﬁ ) J
(5.87)

5.8.5 A Simple Stretch-Based Hyperelastic Material

A material frequently encountered in the literature is defined by a hyperelastic
potential in terms of the logasithmic stretches and two material parameters A and

L as,

WO A 43) = Bl + (e 4 (0 257+ 500 T (5.88)
where, because J = A1Azhs5.

InJ =InA;+1lnir+1nks {5.89)

Tt will be shown that the potendal W leads to a generalization of the stress—strain
relationships employed in classical linear elasticity.
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Using Equation (5.75) the principal Cauchy stress componenis emerge as,

1 8w 2 A
= =+ Lmy 5.
Tilnn, - 7 ety (5-90)

Tou =
Furthermore, the coefficients of the elasticity tensor in (5.36) are,

1 v A 2u

—————— ==+ 5.91

Tilaadinas 1T (5:51)

The similarities between these equations and linear elasticity can be estzblished
if we first recall the standard small strain elastic equations as,

O = MEY] + S22 + 833) + 2800 (5.92)

Recalling that InJ = Ini; + Inks 4 InAz it transpires that Equations (5.90)
and (5.92) are identical except for the small strains having been replaced by the
iogarithunic stretches and A and w by A/J and 42/ J respectively. The stress-strain
equations can be inverted and expressed in terms of the more familiar material
parameters £ and v, the Young’s modulus and Poisson ratio, as,
ind, = ‘-[(1 + V)oge — V(o1 + 022 + 033)]0 E= M;
Al
_ A
T 2a42u

Remark 6: At the initial unstressed configuration, J = Ay = 1, 0ge = 0, and the
principal directions coincide with the three spatial directions #, = e, and therefore
Ty; == 8. Substituting these values into Equations (5.91), (5.87), and (5.86) gives
the initial elasticity tensor for this type of material as,

(3.93a,b,c)

i = M8y + 288 (5.94)

which again (see Remark 3) coincides with the standard spatially isotropic elasticity
tensor.

5.6.6 Nearly Incompressible Material in Principal Directions

In view of the importance of nearly incompressible material behavior, coupled with
the likelihood that such materials will be described naturally in terms of principal
stretches, it is now logical to elaborate the formulation in preparation for the case
when the material defined by Equation (5.83) becomes nearly incompressible. Once
again, the distortional components of the kinematic variables being used, namely the
stretches A, must be identified first. This is achieved by recalling Equations (3.43)
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and (3.61) for F and F to give,
F=J71°F

3
=73 una @ N

a=1
3
= > (UTPr)ne ® Ne (5.95)
a==]
This enables the distortional stretches Lo to be identified as,
Jiw = J Y300 he = Y30, , (5.962.b)

Substituting (5.96b) into the hyperelastic potential defined in (3.83) yields after
simple algebra a decoupled representation of this material as,

WA, Az, As) = B Az Ag) + UG (.97
where the distortional and volumetric components are,

Ty, L2, 23y = plin i) + ndz)* + (n i) (5.982)

Uy =iea ) gk =r+35p (5.98b)

Note that this equation is a particular case of the decoupled Equation (3.56) with
alternative definitions of U7 (J) and . The function U{J ) will enforce incompress-
ibility only when the ratio « to u is sufficiently high. typically 10°~1G%. Under such
conditions the value of Jis J =~ 1 and In J ~ 1 — J, and therefore the value of U7
wili approximately coincide with the function defined in (5.57).

For the expression [J({J), the corresponding value of the hydrostatic pressure
p is re-evaiuated using Equation (5.59) to give,

_dUu _«inlJ

P=Ur =77
In order to complete the stress description, the additional deviatoric component
must be evaluated by recalling Equation (5.75) as,

. 1 8w
T 7 0lnAg

(5.99)

1 0 L
T Jdlnhy,  J8lnkg

1 8%  «lnJ

= —— 5.10C
J3Inhy i J ( )
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Observing that the second term in this equation is the pressure, the principal devi-
atoric stress components are obviously,

.1 v

Cag == 781[’1}\.0, {5.101)

In order to obtain the derivatives of U it is convenient to rewrite this function with
the help of Equation (5.96a) as,

¥ = ulnfy) + (nfo)* + (0 )
= pl(nh)* + (ar2) + (0 4s)] + judn 7Y
— $un J)Ink; + Iy +1nks)
== u[(In A1) + (InA2)* + (n2s)’] — $u(ln ) (5.102)

This expression for T is formally identdcal to Equation (5.88) for the complete
hyperelastic potential W with the Lame coefficient A now replaced by —2u/3.
Conseguently, Equation (5.90) can now be recycled to give the deviatoric principal
stress component as,

2 2
ol = 7"" g — %m.r (5.103)

The final stage in this developroent is the evaluation of the volumetric and
deviatoric compouents of the spatial elasticity tensor ¢-. For a general decoupled
hyperelastic potential this decomposition is embodied in Equation (5.64), where ¢/
is expressed as,

o==E&+cy, +oy (3.104)

where the origin of the pressure compenent ¢, is the second term in the general
equation for the Lagrangian elasticity tensor (5.61). which is entirely geometrical,
that is, independent of the material being used. and therefore remains unchanged
as given by Equation {5.35b). However, the volumetric component ¢, depends on
the particular function I/ (J) being used and in the present case becomes,
J U i®r
e =J—=
AN E
k(1 — pJ)
h J
The deviatoric component of the elasticity tensor & emerges from the push
forward of the first term in Equaticn (5.61). Its evaluation 1s facilitated by again
recalling that U coincides with ¥ when the parameter A is replaced by —2u/3.
A reformulation of the spatial elasticity tensor following the procedure previcusly

I®I (5.105)
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described with this substitution and the corresponding replacement of 0ga BY Ol
inevitably leads to the Cartesian components of & as,

3 20 3
R 17 )
Eijry = s TuTyTaTn — ) 200 Tai Tai Tak Te
/ o5y J Bndad ok ;
ol AE —ahdd
+ e i Ta; Tt Tt (5.106)
a,5=1 Ay =45

where the derivatives of ¥ for the material under consideration are,

o
1_ 8% 2w, 2 (5.107)
T3lnredimis T 37

5.6.7 Plane Strain and Plane Stress Cases

The plane strain case is defined by the fact that the stretch in the third direction
As; = L. Under such conditions, the stored elastic potential becomes,

2 T A‘ 2
Wkt A) = w[(n ) + (0 ka)T + 50 ) (5.108)

where j = detoys F is the determinant of the components of F in the py and n»
plane. The three stresses are obtained using exactly Equation (3.90) with A3 == 1
and J = j.

The plane stress case is a little more complicated in that it is the stress in the 73
direction rather than the stretch that is constrained, that is o33 = 0. Impesing this
condition in Equation (5.90} gives,

o)
o33 =0=%lnl+:;—lnk3 (5.109)

from which the logarithmic stretch in the third direction emerges 2s,

Ini; = — Inj (5.110)

AA42n
Substituting this expression into Equation (5.88) and noting thatln J = Inh;+1n j

gives,
) =l X o
Wk, ko) = ul(n i) + (o iz} + {0 j)° (3.111)

where the effective Lame coefficient X is,

- 2
l:y;«.: Vo= }\_—5—'7# (5112)
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Additionally, using Equation {5.110) the three-dimensional volume ratio J can be
found as a function of the planar component § s,

J=jv (5.113)

By either substituting Equation (5.110) into Equation (5.88} or differentiating Equa-
rion (5.111) the principal Cauchy stress components are cbtained as,

=i P 5.114
Oae = JT nJ + ?" o ( . )
and the coefficients of the Eulerian elasticity tensor become,

1 LR o2
R S TN |
Tiinigdlnag 7 T 7 (5.115)

5.6.8 Uniaxial Rod Case

In a uniaxial rod case, the stresses in directions orthogenal to the rod, og; and o33
vanish. Imposing this condition in Equation (3.90) gives two equations as,

AlnJ+2ulnl =0 (3.116a)

AlnS+Zulni; =0 (5.116h)
from which it easily follows that the stretches in the second and third directions are
equal and related to the main stretch via Poisson’s ratio v as,

A

InAy =Ilnis =—vinky; v=m

(5.117)

Using Equatdons (5.89-90) and (5.117) a one-dimensional constitutive equation

invelving the rod stress oy;. the logarithmic strain Inkq, and Young's modulus £

eImerses as,

_ pQu+30
A+

where J can be obtained with the help of Equation (3.117) in terms of A; and v as,

E
g = 7111)\.1: E (5118)
J = (5.119)

Note that for the incompressible case J = 1, Equation (5.118) coincides with the
uniaxial constitutive equation employed in Chapter 1.
Finally, the stored elastic energy given by Equation (5.88) becomes.

W) = ?(lnxl)z (5.120)
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and, choosing a local axis in the directior: of the rod, the oaly effective term in the
Eulerian tangent modulus Cp117 is given by Equation (5.86) as,

2
L E (5.121)

SN e T, T T T

Again, for the incompressible case J = 1, the term £ — 25y was already apparent -

in Chapter 1 where the equilibrium equation of a rod was linearized in a direct

Nanner.

Exercises

1. In a plane stress situation the right Cauchy—Green tensor C is,

Cn Ciz O N
C=|Cy Cz 0 | Cun = 0
0 0 Cs

where B and A are the initial and current thickness respectively. Show that
incompressibility implies, :

—= Cn Cr2
5 =k a3 = I =
G = (€7 s T ¢ i: o ng}

Using these equations, show that for an incompressible neo-Hookean material
the plane stress condition S33 = 0 enables the pressure in Equation (5.50) tobe

explicitly evaluated as,
p = tul{ly — 20zt

and therefore the in-plane components of the second Piola-Kirchboff and Cauchy
tensors are,

S=u(f-tT™)
& = (b — UGT)

where the overline indicates the 2 x 2 components of a iensor.
. Show that the Equations in Exercise 1 can also be derived by imposing the
condition C33 = I}EI(;:ZI in the neo-Hookean elastic function W to give,

12

V(C) = jully +111g‘ -3)

from which S is obtained by differentiation with respect to the in-plane tensor
C. Finally, prove that the Lagrangian and Eulerian in-plane elasticity tensors
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are,
C=2u' €' @T ' +T)
&=2ullf' T @T+0)
3. Using the push back—pull-forward relationships between & and d and berween
C and ¢ show that,
E:C:E=Jd:ic:d

for any arbitrary motion. Using this equation and recalling Example 5.2, show
that,
Jo=4b iy b
© T obdb
Check that using this equation for the compressible neo-Hookean model you
retrieve Equation (5.35).
4, Usingthe simple stretch-based hyperelastic equations discussed in Section 5.6.5,
show that the principal stresses for a simple shear test are,

o] = —0n =24 sinh~! }Zi

Find the Cartesian stress components.
- A general type of incompressible hyperelastic material proposed by Ogden is
defined by the following strain energy function:

Lh

N
W3 E200 2 a2y
p=1"7

Derive the homogeneous counterpart of this functional. Obtain expressions for
the principal components of the deviatoric stresses and elasticity tensor.
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15 Numerical Finite and Boundary
Element Methods

Reviewing the previous chapters would indicate that analytical solutions to elasticity problems
are normally accomplished for regions and loadings with relatively simple geometry. For
example, many solutions can be developed for two-dimensional problems, while only a limited
number exist for three dimensions. Solutions are commonly available for problems with simple
shapes such as those having boundaries coinciding with Cartesian, cylindrical, and spherical
coordinate surfaces. Unfortunately, however, problems with more general boundary shape and
loading are commonly intractable or require very extensive mathematical analysis and numer-
ical evaluation. Because most real-world problems involve structures with complicated shape
and loading, a gap exists between what is needed in applications and what can be solved by
analytical closed-form methods.

Over the years, this need to determine deformation and stresses in complex problems has
lead to the development of many approximate and numerical solution methods (see brief
discussion in Section 5.7). Approximate methods based on energy techniques were outlined in
Section 6.7, but it was pointed out that these schemes have limited success in developing
solutions for problems of complex shape. Methods of numerical stress analysis normally recast
the mathematical elasticity boundary value problem into a direct numerical routine. One such
early scheme is the finite difference method (FDM) in which derivatives of the governing field
equations are replaced by algebraic difference equations. This method generates a system of
algebraic equations at various computational grid points in the body, and solution to the system
determines the unknown variable at each grid point. Although simple in concept, FDM has not
been able to provide a useful and accurate scheme to handle general problems with geometric
and loading complexity. Over the past few decades, two methods have emerged that provide
necessary accuracy, general applicability, and ease of use. This has lead to their acceptance by
the stress analysis community and has resulted in the development of many private and
commercial computer codes implementing each numerical scheme.

The first of these techniques is known as the finite element method (FEM) and involves
dividing the body under study into a number of pieces or subdomains called elements. The
solution is then approximated over each element and is quantified in terms of values at special
locations within the element called the nodes. The discretization process establishes an
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algebraic system of equations for the unknown nodal values, which approximate the continu-
ous solution. Because element size, shape, and approximating scheme can be varied to suit the
problem, the method can accurately simulate solutions to problems of complex geometry and
loading. FEM has thus become a primary tool for practical stress analysis and is also used
extensively in many other fields of engineering and science.

The second numerical scheme, called the boundary element method (BEM), is based on an
integral statement of elasticity (see relation (6.4.7)). This statement may be cast into a form
with unknowns only over the boundary of the domain under study. The boundary integral
equation is then solved using finite element concepts where the boundary is divided into
elements and the solution is approximated over each element using appropriate interpolation
functions. This method again produces an algebraic system of equations to solve for unknown
nodal values that approximate the solution. Similar to FEM techniques, BEM also allows
variation in element size, shape, and approximating scheme to suit the application, and thus the
method can accurately solve a large variety of problems.

Generally, an entire course is required to present sufficient finite and boundary element
theory to prepare properly for their numerical/computational application. Thus, the brief
presentation in this chapter provides only an overview of each method, focusing on narrow
applications for two-dimensional elasticity problems. The primary goal is to establish a basic
level of understanding that will allow a quick look at applications and enable connections to be
made between numerical solutions (simulations) and those developed analytically in the
previous chapters. This brief introduction provides the groundwork for future and more
detailed study in these important areas of computational solid mechanics.

15.1 Basics of the Finite Element Method

Finite element procedures evolved out of matrix methods used by the structural mechanics
community during the 1950s and 1960s. Over the years, extensive research has clearly
established and tested numerous FEM formulations, and the method has spread to applications
in many fields of engineering and science. FEM techniques have been created for discrete and
continuous problems including static and dynamic behavior with both linear and nonlinear
response. The method can be applied to one-, two-, or three-dimensional problems using a
large variety of standard element types. We, however, limit our discussion to only two-
dimensional, linear isotropic elastostatic problems. Numerous texts have been generated that
are devoted exclusively to this subject; for example, Reddy (1993), Bathe (1995), Zienkiewicz
and Taylor (1989), Fung and Tong (2001), and Cook, Malkus, and Plesha (1989).

As mentioned, the method discretizes the domain under study by dividing the region into
subdomains called elements. In order to simplify formulation and application procedures,
elements are normally chosen to be simple geometric shapes, and for two-dimensional
problems these would be polygons including triangles and quadrilaterals. A two-dimensional
example of a rectangular plate with a circular hole divided into triangular elements is shown in
Figure 15-1. Two different meshes (discretizations) of the same problem are illustrated, and
even at this early stage in our discussion, it is apparent that improvement of the representation
is found using the finer mesh with a larger number of smaller elements. Within each element,
an approximate solution is developed, and this is quantified at particular locations called the
nodes. Using a linear approximation, these nodes are located at the vertices of the triangular
element as shown in the figure. Other higher-order approximations (quadratic, cubic, etc.) can
also be used, resulting in additional nodes located in other positions. We present only a finite
element formulation using linear, two-dimensional triangular elements.
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(Discretization with 228 Elements)

(Triangular Element)

(Discretization with 912 Elements)

FIGURE 15-1 Finite element discretization using triangular elements.

Typical basic steps in a linear, static finite element analysis include the following:

1. Discretize the body into a finite number of element subdomains

2. Develop approximate solution over each element in terms of nodal values

3. Based on system connectivity, assemble elements and apply all continuity and boundary
conditions to develop an algebraic system of equations among nodal values

4. Solve assembled system for nodal values; post process solution to determine additional
variables of interest if necessary

The basic formulation of the method lies in developing the element equation that approxi-
mately represents the elastic behavior of the element. This development is done for the generic
case, thus creating a model applicable to all elements in the mesh. As pointed out in Chapter 6,
energy methods offer schemes to develop approximate solutions to elasticity problems, and
although these schemes were not practical for domains of complex shape, they can be easily
applied over an element domain of simple geometry (i.e., triangle). Therefore, methods of
virtual work leading to a Ritz approximation prove to be very useful in developing element
equations for FEM elasticity applications. Another related scheme to develop the desired
element equation uses a more mathematical approach known as the method of weighted
residuals. This second technique starts with the governing differential equations, and through
appropriate mathematical manipulations, a so-called weak form of the system is developed.
Using a Ritz/Galerkin scheme, an approximate solution to the weak form is constructed, and
this result is identical to the method based on energy and virtual work. Before developing the
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element equations, we first discuss the necessary procedures to create approximate solutions
over an element in the system.

15.2 Approximating Functions for Two-Dimensional
Linear Triangular Elements

Limiting our discussion to the two-dimensional case with triangular elements, we wish to
investigate procedures necessary to develop a linear approximation of a scalar variable u(x,y)
over an element. Figure 15-2 illustrates a typical triangular element denoted by €. in the x,y-
plane. Looking for a linear approximation, the variable is represented as

u(x,y) = c1 + cox +c3y (15.2.1)

where c¢; are constants. It should be kept in mind that in general the solution variable is expected
to have nonlinear behavior over the entire domain and our linear (planar) approximation is only
proposed over the element. We therefore are using a piecewise linear approximation to represent
the general nonlinear solution over the entire body. This approach generally gives sufficient
accuracy if a large number of elements are used to represent the solution field. Other higher-order
approximations including quadratic, cubic, and specialized nonlinear forms can also be used to
improve the accuracy of the representation.

(X3,¥3)
=T+ I3+ 13

(x1.y1)
(X2,y2)

(Element Geometry)

v3

(Lagrange Interpolation Functions)

FIGURE 15-2 Linear triangular element geometry and interpolation.
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It is normally desired to express the representation (15.2.1) in terms of the nodal values of
the solution variable. This can be accomplished by first evaluating the variable at each of the
three nodes

u(xy,y)) = uy = ¢y + cxp + c3y;
u(x2,y2) = s = 1 + C2x2 + C3)2 (15.2.2)
u(x3,y3) = uz = 1 + c2x3 + €3y3

Solving this system of algebraic equations, the constants ¢; can be expressed in terms of the
nodal values u;, and the general results are given by

1
= E(OCIMI + oouy + o3u3)
1
2 :E(ﬁﬂll + Byuz + Biu3) (15.2.3)
e

1
c3 = E(Vlul + Yot + Y3u3)

where A, is the area of the element, and o; = Xy — x1yj, B; =¥ — Y& Vi = Xk — Xj, where
i #j # k and i,j,k permute in natural order. Substituting for ¢; in (15.2.1) gives

1
u(x,y) = A [(oyuy + auy + o3u3)

+ (Byur + Pauz + Baus)x

+ (p1u1 + paouz + p3u3)y] (15.2.4)
3
=Y uhixy)
i=1
where V; are the interpolation functions for the triangular element given by
1
Vitey) =g @it o) (15.2.5)

It is noted that the form of the interpolation functions depends on the initial approximation
assumption and on the shape of the element. Each of the three interpolation functions
represents a planar surface as shown Figure 15-2, and it is observed that they will satisfy the
following conditions:

3

Vi) = 0y Y Wy =1 (15.2.6)

i=1

Functions satisfying such conditions are referred to as Lagrange interpolation functions.
This method of using interpolation functions to represent the approximate solution over an
element quantifies the approximation in terms of nodal values. In this fashion, the continuous
solution over the entire problem domain is represented by discrete values at particular nodal
locations. This discrete representation can be used to determine the solution at other points in
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the region using various other interpolation schemes. With these representation concepts
established, we now pursue a brief development of the plane elasticity element equations
using the virtual work formulation.

15.3 Virtual Work Formulation for Plane Elasticity

The principle of virtual work developed in Section 6.5 can be stated over a finite element
volume V, with boundary S, as

j Ut'jéeijdv = J Tln(SM,dS + J F;ou;,dV (15.3.1)
Ve Se v,

For plane elasticity with an element of uniform thickness 4., V, = h,Q, and S, = h,I',, and
the previous relation can be reduced to the two-dimensional form

h, J (0 0e; + aydey + 21, b€y )dxdy
Q.

(15.3.2)
— heJ (T ou + T;’év)ds — h, J (Fy0u + Fyov)dxdy = 0
r, Q,
Using matrix notation, this relation can be written as
de, T Oy
he J dey oy dxdy
20eyy Tyy (15.3.3)

ol (LY L (o o=

We now proceed to develop an element formulation in terms of the displacements and choose a
linear approximation for each component

3

u(x,y) =Y uahi(x,y)
i=1
3

viey) =Y vahi(x,)

i=1

(15.3.4)

where /;(x, y) are the Lagrange interpolation functions given by (15.2.5). Using this scheme
there will be two unknowns or degrees of freedom at each node, resulting in a total of six
degrees of freedom for the linear triangular element. Because the strains are related to
displacement gradients, this interpolation choice results in a constant strain element (CST),
and of course the stresses will also be element-wise constant. Relation (15.3.4) can be
expressed in matrix form:
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uj
Vi

£ B KA R L ST EEE
; "
V3
The strains can then be written as
e, a/0x 0
u
fe} =< e »= 0 0/dy }
2e,y, /0y 0/0x Y
8/;x 0 (15.3.6)
=| 0 0/oy|[bl{A} =[B]{A}
0/dy 0/0x
where
T TS T
Bx E)x c’)x ﬁ 0 ﬁ 0 B 0
o, o, 05 1 ! 2 3
Bl=| 0 — 0 —/ 0 —=|=-—10 9 0 pn 0 7
Ay Ay dy 24,
%%3%%3%% no B Byovs B

d dx dy ox Jy o«
(15.3.7)

Hooke’s law then takes the form
{o} = [Cl{e} = [CI[B]{A} (15.3.8)

where [C] is the elasticity matrix that can be generalized to the orthotropic case (see Section
11.2) by

Ci Cp O
[Cl=[Ci2 Cx O (15.3.9)
0 0 Cg
For isotropic materials,
E
——— - plane stress
Cii = Cry — 1—v
T M lane strain
02y P
E
7V2. . plane stress (15.3.10)
Cp=<1-v

% s plane strain

Ces = L - - plane stress and plane strain

20+
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Using results (15.3.5), (15.3.6), and (15.3.8) in the virtual work statement (15.3.3) gives

he JQ {0A} (IBI"[CIIB]) (A }dxdy

. (15.3.11)
F, T
e | {5A}T[¢]T{ }dxdy—hgj V[ { } ds =0
Q F, I Iy

which can be written in compact form

{0AY ([KI{A} — {F} —{Q}) =0 (15.3.12)

Because this relation is to hold for arbitrary variations {0A}7, the expression in parentheses
must vanish, giving the finite element equation

[KI{A} = {F} + {Q} (15.3.13)

The equation matrices are defined as follows:

K] = hef [BI"[C][Bldxdy - - - Stiffness Matrix
Q.

{F} = heJ [llf]T{ }dxdy -Body Force Vector (15.3.14)

y

{Q} = hej N}]T{ ); }ds- -+ Loading Vector
r, Ty

Using the specific interpolation functions for the constant strain triangular element, the [B]
matrix had constant components given by (15.3.7). If we assume that the elasticity matrix also
does not vary over the element, then the stiffness matrix is given by

K] = h.A.[BI'[C][B] (15.3.15)
and multiplying out the matrices gives the specific form

BiCn +,|C66 ﬂmCm TB11Co6 Bi1h2Cri +7172Css B172C12 + P211Cos - BiF3Cri +7173Css  B173Ci2 + B371Cos
}1C22+ﬁ1C66 /52“/12(:1’ +ﬂ1/2cfvé 717222 + B1B2Cos B371Ci2 + B173Ces  1173C22 + B1B3Ce6
K] = he : B3Cn + 73Ces ﬁ2/3C12 + ﬂgrzcﬁo BaBsCri +7273Ce6  B273C12 + B372Ce6
4A, : . : 73C22 + B3Ce6 B372C12 + Br73Cs6  7273C22 + B2B3C66
: : : : BiCii +93Css  PBav3Cia + B273Css

: 73Cn + B3Ces

(15.3.16)

Note that the stiffness matrix is always symmetric, and thus only the top-right (or bottom-left)
portion need be explicitly written out. If we also choose body forces that are element-wise
constant, the body force vector {F} can be integrated to give

hA.,
(F} = BT {F. Fy F. F, F, F,}" (15.3.17)
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The {Q} matrix involves integration of the tractions around the element boundary, and its
evaluation depends on whether an element side falls on the boundary of the domain or is
located in the region’s interior. The evaluation also requires a modeling decision on the
assumed traction variation on the element sides. Most problems can be adequately modeled
using constant, linear, or quadratic variation in the element boundary tractions. For the typical
triangular element shown in Figure 15-2, the {@Q} matrix may be written as

T T”
10 = he | 1 {Tn
:hej Wi ds+hj i) ds+hJ wird - bas
I'n Iy T I3 Ty

Wishing to keep our study brief in theory, we take the simplest case of element-wise constant
boundary tractions, which allows explicit calculation of the boundary integrals. For this case,
the integral over element side I, is given by

(15.3.18)

Ty Ty
Ty Ty
Iy v, 1Y heLiz | T"
heJ [‘b]T{ " }dS = heJ w pds = l (15.3.19)
I'n Ty I ll/zT‘,, 2 T}n
l//3Tx 0
n
'//3Ty 0 )1

where L is the length of side I'j,. Note that we have used the fact that along side I"j, ¥, and
W, vary linearly and 15 = 0. Following similar analysis, the boundary integrals along sides I'»3
and I'3; are found to be

0 "
0 T"
hoLys | T" (T heLa 0
hJ [W] { } =2 x ,hJ W< 2 bds = (15.3.20)
¢ I'y; T” 2 ;}Z ¢ I’ T; 2 7911
T;l 23 Tn 31

It should be noted that for element sides that lie in the region’s interior, values of the boundary
tractions will not be known before the solution is found, and thus the previous relations
cannot be used to evaluate the contributions of the {Q} matrix explicitly. However, for this
situation, the stresses and tractions are in internal equilibrium, and thus the integrated result
from one element will cancel that from the opposite adjacent element when the finite element
system is assembled. For element sides that coincide with the region’s boundary, any applied
boundary tractions are then incorporated into the results given by relations (15.3.19) and
(15.3.20). Our simplifications of choosing element-wise constant values for the elastic moduli,
body forces, and tractions were made only for convenience of the current abbreviated presen-
tation. Normally, FEM modeling allows considerably more generality in these choices and
integrals in the basic element equation (15.3.14) are then evaluated numerically for such
applications.
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15.4 FEM Problem Application

Applications using the linear triangular element discretize the domain into a connected set of
such elements; see, for example, Figure 15-1. The mesh geometry establishes which elements
are interconnected and identifies those on the boundary of the domain. Using computer
implementation, each element in the mesh is mapped or transformed onto a master element
in a local coordinate system where all calculations are done. The overall problem is then
modeled by assembling the entire set of elements through a process of invoking equilibrium at
each node in the mesh. This procedure creates a global assembled matrix system equation of
similar form as (15.3.13). Boundary conditions are then incorporated into this global system to
reduce the problem to a solvable set of algebraic equations for the unknown nodal displace-
ments. We do not pursue the theoretical and operational details in these procedures, but rather
focus attention on a particular example to illustrate some of the key steps in the process.

EXAMPLE 15-1: Elastic Plate Under Uniform Tension

Consider the plane stress problem of an isotropic elastic plate under uniform tension
with zero body forces as shown in Figure 15-3. For convenience, the plate is taken with
unit dimensions and thickness and is discretized into two triangular elements as shown.
This simple problem is chosen in order to demonstrate some of the basic FEM solution
procedures previously presented. More complex examples are discussed in the next
section to illustrate the general power and utility of the numerical technique.

The element mesh is labeled as shown with local node numbers within each element
and global node numbers (1-4) for the entire problem. We start by developing the
equation for each element and then assemble the two elements to model the entire plate.
For element 1, the geometric parameters are f; = —1, f, =1, f3=0, y, =0, y, =
—1, y3 =1, and A; = 1/2. For the isotropic plane stress case, the element equation
follows from our previous work:

y
TA, 3
3 2 g
3
>
©
L,
© .
1
k11 22 g mx

FIGURE 15-3 FEM analysis of elastic plate under uniform tension.

422 ADVANCED APPLICATIONS

TLFeBOOK



EXAMPLE 15-1: Elastic Plate Under Uniform Tension-Cont’d

E
2(1 — v2)

In similar fashion for element 2, f;, =0, f, =1, f; =

M1

0 -1 0 —v
1—v 1—v 71—v 1—v 0 )
2 2 2 2 o
3—v I+v 1—v Vi
2 2 2 V)
3—v 1—v 1 v(zl)
2 2 )
1=y )
2 V3
. 1 |

1, A; = 1/2, and the element equation becomes

2(1—12)

These individual element equations are to be assembled to model the plate, and this is
carried out using the global node numbering format by enforcing x and y equilibrium at

r1—v 0 0 1w 1—v 1—-v 7
2 2 2 2 u?
-1 - 0 v -1 )
1 0 -1 v Vi
l—v 1-v T—v| ] u?
2 2 2 vy
3—v 1—v 0]
2 2 1))
3—v V3
L 2

each node. The final result is given by the assembled global system

(1 2 1 2 1 1
KRR K HKE K K

(1) (2) (1) (1)
Ky +Ky Ky Ky
(1) (1)

Ky Ky

(1)

Ky,

Ky K
Ky + Ky Ky + Ky,
K K
Ky oK
K +K5) K + K5
KoK

U,
Vi
U,
Vs
us [
V3
Uy
Vs

K
KO
0
0
kY

Ok

K16
()

K26

(15.4.2)

(15.4.3)

Continued
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EXAMPLE 15-1: Elastic Plate Under Uniform Tension-Cont’d

where U; and V; are the global x and y nodal displacements, and K fjl) and K 5’2) are the local
stiffness components for elements 1 and 2 as given in relations (15.4.1) and (15.4.2).

The next step is to use the problem boundary conditions to reduce this global system.
Because the plate is fixed along its left edge, U} =V, = Uy = V4 = 0. Using the
scheme presented in equations (15.3.18) through (15.3.20), the tractions on the
right edge are modeled by choosing TSY) =T/2, Tg,) =0, T;,l\-) + Tg,) =T/2, T_g;,)—i—
T%,) = 0. These conditions reduce the global system to

Ky KY Ky T(wm) (77

)kl kD el sas

KRS KK ) U T 12 *
ki [ L) Lo

This result can be then be solved for the nodal unknowns, and for the case of material
with properties £ = 207 GPa and v = 0.25, the solution is found to be

U, 0.492

Vz _ 0081 —11

Us ( — ) 0441 Tx10""'m (15.4.4)
V3 —0.030

Note that the FEM displacements are not symmetric as expected from analytical theory.
This is caused by the fact that our simple two-element discretization eliminated the
symmetry in the original problem. If another symmetric mesh were used, the displace-
ments at nodes 2 and 3 would then be symmetric. As a postprocessing step, the forces at
nodes 1 and 4 could now be computed by back-substituting solution (15.4.4) into the
general equation (15.4.3). Many of the basic steps in an FEM solution are demonstrated
in this hand-calculation example. However, the importance of the numerical method lies
in its computer implementation, and examples of this are now discussed.

15.5 FEM Code Applications

The power and utility of the finite element method lies in the use of computer codes thatimplement
the numerical method for problems of general shape and loading. A very large number of both
private and commercial FEM computer codes have been developed over the past few decades.
Many of these codes (e.g., ABAQUS, ANSYS, ALGOR, NASTRAN, ADINA) offer very
extensive element libraries and can handle linear and nonlinear problems under either static or
dynamic conditions. However, the use of such general codes requires considerable study and
practice and would not suit the needs of this chapter. Therefore, rather than attempting to use a
general code, we follow our numerical theme of employing MATLAB software, which offers a
simple FEM package appropriate for our limited needs. The MATLAB code is called the PDE
Toolbox and is one of the many toolboxes distributed with the basic software. This software
package provides an FEM code that can solve two-dimensional elasticity problems using linear
triangular elements. Additional problems governed by other partial differential equations can also
be handled, and this allows the software to also be used for the torsion problem. The PDE Toolbox
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